Recently, we characterized the complete phase transition diagram in the phi-Pe parameter space for two models of active brownian particles in two dimensions. These models are composed of hard disks and dumbbells, respectively, the former being isotropic and the latter anisotropic. Here, we want to outline all the most significant features of these two paradigmatic models and compare them.Remarkably, the phase diagrams of the two models are affected differently by the introduction of activity. Disks present a two-stage melting scenario from Pe=0 to about Pe=3, with a first order phase transition between liquid and hexatic and a Berezinskii-Kosterlitz-Thouless transition between hexatic and solid. At higher activities, the three phases are still observed, but the transition between liquid and hexatic becomes a BKT transitions without a distinguishable coexistence region. Dumbbells, instead, present a macroscopic coexistence between hexatically ordered regions and disordered ones, over a finite interval of packing fractions, for all activities, included Pe=0, without any observable discontinuity in the behavior upon increasing Pe.

2D melting and motility induced phase separation in Active Brownian Hard Disks and Dumbbells

Digregorio P.;Suma A.;Gonnella G.;
2019-01-01

Abstract

Recently, we characterized the complete phase transition diagram in the phi-Pe parameter space for two models of active brownian particles in two dimensions. These models are composed of hard disks and dumbbells, respectively, the former being isotropic and the latter anisotropic. Here, we want to outline all the most significant features of these two paradigmatic models and compare them.Remarkably, the phase diagrams of the two models are affected differently by the introduction of activity. Disks present a two-stage melting scenario from Pe=0 to about Pe=3, with a first order phase transition between liquid and hexatic and a Berezinskii-Kosterlitz-Thouless transition between hexatic and solid. At higher activities, the three phases are still observed, but the transition between liquid and hexatic becomes a BKT transitions without a distinguishable coexistence region. Dumbbells, instead, present a macroscopic coexistence between hexatically ordered regions and disordered ones, over a finite interval of packing fractions, for all activities, included Pe=0, without any observable discontinuity in the behavior upon increasing Pe.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/249887
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
social impact