The percutaneous permeation profiles of sulfadiazine sodium salt, propranolol hydrochloride and tyrosol from novel liquid crystal-niosomes formulations as multicomponent systems, were investigated. The new carriers were prepared from mixture of water/surfactant, AOT or Pluronic L64 as anionic and nonionic surfactants, respectively, in order to obtain lamellar LLC phases. The same surfactants were used to prepare also the vesicular systems (niosomes) that were added to the corresponding gel. The obtained multicomponent drug carrier was characterized by deuterium nuclear magnetic resonance spectroscopy, in order to understand if the introduction of the drug or drug-loaded niosomal suspension, as third component in the formulations, could influence the microstructure of the system and then the drug delivery across the skin. Simple AOT and L64-based niosomal formulations and LLCs phases were then prepared and used as control. Different drugs percutaneous availability was achieved, and the results revealed that the obtained gel-niosomes carriers were affected by the chemical structure of the drugs and by their affinity for the components. As a consequence these systems could be proposed as novel transdermal drug delivery systems, since they were found able to control the percutaneous permeation of small drugs across the skin. (C) 2013 Elsevier B.V. All rights reserved.
Novel gel-niosomes formulations as multicomponent systems for transdermal drug delivery
Gentile L.;
2013-01-01
Abstract
The percutaneous permeation profiles of sulfadiazine sodium salt, propranolol hydrochloride and tyrosol from novel liquid crystal-niosomes formulations as multicomponent systems, were investigated. The new carriers were prepared from mixture of water/surfactant, AOT or Pluronic L64 as anionic and nonionic surfactants, respectively, in order to obtain lamellar LLC phases. The same surfactants were used to prepare also the vesicular systems (niosomes) that were added to the corresponding gel. The obtained multicomponent drug carrier was characterized by deuterium nuclear magnetic resonance spectroscopy, in order to understand if the introduction of the drug or drug-loaded niosomal suspension, as third component in the formulations, could influence the microstructure of the system and then the drug delivery across the skin. Simple AOT and L64-based niosomal formulations and LLCs phases were then prepared and used as control. Different drugs percutaneous availability was achieved, and the results revealed that the obtained gel-niosomes carriers were affected by the chemical structure of the drugs and by their affinity for the components. As a consequence these systems could be proposed as novel transdermal drug delivery systems, since they were found able to control the percutaneous permeation of small drugs across the skin. (C) 2013 Elsevier B.V. All rights reserved.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.