Aqueous tetrabutylammonium hydroxide, TBAH(aq), has been found to dissolve cellulose and to be a potential solvent for chemical processing or fiber spinning. In this paper, we have investigated the dissolution state of cellulose in 40 wt % TBAH(aq) solvent, and present an extensive study of rheology, combined with static light and small-angle X-ray scattering, to correlate cellulose aggregation with changes in the rheological parameters. Two cellulose molecular weights are compared. Microcrystalline cellulose (MCC), with a degree of polymerization of ca. 260, and a dissolving pulp with an approximately ten times higher molecular weight. Scattering data demonstrate that cellulose is molecularly dissolved at lower cellulose concentrations, while aggregates are present when the concentration exceeds a certain value. The onset of the aggregate formation is marked by a pronounced increase in the scattering intensity at low q, shear thinning behavior and violation of the empirical Cox-Merz rule. Additionally, the SAXS data suggest the presence of a solvation shell enriched in TBA+ ions, compared to the bulk solvent. The results are consistent with the recent suggestion that while native cellulose I may still dissolve, solutions are, above a particular concentration, becoming supersaturated with respect to the more stable crystal form cellulose II.

On cellulose dissolution and aggregation in aqueous tetrabutylammonium hydroxide

Gentile L.;
2016-01-01

Abstract

Aqueous tetrabutylammonium hydroxide, TBAH(aq), has been found to dissolve cellulose and to be a potential solvent for chemical processing or fiber spinning. In this paper, we have investigated the dissolution state of cellulose in 40 wt % TBAH(aq) solvent, and present an extensive study of rheology, combined with static light and small-angle X-ray scattering, to correlate cellulose aggregation with changes in the rheological parameters. Two cellulose molecular weights are compared. Microcrystalline cellulose (MCC), with a degree of polymerization of ca. 260, and a dissolving pulp with an approximately ten times higher molecular weight. Scattering data demonstrate that cellulose is molecularly dissolved at lower cellulose concentrations, while aggregates are present when the concentration exceeds a certain value. The onset of the aggregate formation is marked by a pronounced increase in the scattering intensity at low q, shear thinning behavior and violation of the empirical Cox-Merz rule. Additionally, the SAXS data suggest the presence of a solvation shell enriched in TBA+ ions, compared to the bulk solvent. The results are consistent with the recent suggestion that while native cellulose I may still dissolve, solutions are, above a particular concentration, becoming supersaturated with respect to the more stable crystal form cellulose II.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/249594
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 43
social impact