Several examples illustrate the effectiveness of using Deep Eutectic Solvents (DESs) as environmentally responsible reaction media in polar organometallic chemistry, and in metal- and bio-catalysed processes in place of conventional, often hazardous volatile organic compounds (VOCs). Aside from the standpoint of “greenness”, applications of DESs in the above fields also reveal novel aspects of reactivity of practical significance, which are worthy of an in-depth mechanistic understanding: (a) metal-mediated organic transformations can be run in DESs competitively with protonolysis, often at room temperature and under air; (b) metal-catalysed reactions proceed efficiently and under milder conditions in DESs than in VOCs, with the catalyst and DES being easily and successfully recycled; (c) biocatalysts often exhibit higher stability, selectivity and performances in DES mixtures than in aqueous solutions, and a somewhat intriguing stereoselectivity
Deep eutectic solvents and their applications as green solvents
Perna, Filippo Maria;Vitale, Paola;Capriati, Vito
2020-01-01
Abstract
Several examples illustrate the effectiveness of using Deep Eutectic Solvents (DESs) as environmentally responsible reaction media in polar organometallic chemistry, and in metal- and bio-catalysed processes in place of conventional, often hazardous volatile organic compounds (VOCs). Aside from the standpoint of “greenness”, applications of DESs in the above fields also reveal novel aspects of reactivity of practical significance, which are worthy of an in-depth mechanistic understanding: (a) metal-mediated organic transformations can be run in DESs competitively with protonolysis, often at room temperature and under air; (b) metal-catalysed reactions proceed efficiently and under milder conditions in DESs than in VOCs, with the catalyst and DES being easily and successfully recycled; (c) biocatalysts often exhibit higher stability, selectivity and performances in DES mixtures than in aqueous solutions, and a somewhat intriguing stereoselectivityFile | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S2452223619300458-main.pdf
non disponibili
Tipologia:
Documento in Versione Editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.49 MB
Formato
Adobe PDF
|
1.49 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.