Diabetic cardiomyopathy refers to dysfunction of cardiac muscle in patients with diabetes that cannot be directly ascribed to hypertension, coronary heart disease or other defined cardiac abnormalities per se. The development of diabetic cardiomyopathy may involve several distinct mechanisms, including increased formation of advanced glycation end products (AGEs) secondary to hyperglycaemia. AGEs may alter structural proteins and lead to increased arterial and myocardial stiffness. Therefore, therapies that prevent or retard development of AGEs in diabetes may be valuable strategies to treat or prevent diabetic cardiomyopathy. In this issue of British Journal of Pharmacology, Wu and colleagues demonstrate that aminoguanidine (inhibitor of AGE formation and protein cross-linking) treatment of a rat model of type I diabetes (rats made insulin deficient with streptozotocin and nicotinamide treatment) ameliorates detrimental changes in left ventricular structure and function. Results from this study are in agreement with previous investigations, suggesting that aminoguanidine is effective in preventing cardiac hypertrophy and arterial stiffening in experimental animal models of diabetes and emphasize the potential pathogenic role of AGEs in diabetic cardiomyopathy.

Diabetic cardiomyopathy: how much does it depend on AGE?

MONTAGNANI, MONICA
2008-01-01

Abstract

Diabetic cardiomyopathy refers to dysfunction of cardiac muscle in patients with diabetes that cannot be directly ascribed to hypertension, coronary heart disease or other defined cardiac abnormalities per se. The development of diabetic cardiomyopathy may involve several distinct mechanisms, including increased formation of advanced glycation end products (AGEs) secondary to hyperglycaemia. AGEs may alter structural proteins and lead to increased arterial and myocardial stiffness. Therefore, therapies that prevent or retard development of AGEs in diabetes may be valuable strategies to treat or prevent diabetic cardiomyopathy. In this issue of British Journal of Pharmacology, Wu and colleagues demonstrate that aminoguanidine (inhibitor of AGE formation and protein cross-linking) treatment of a rat model of type I diabetes (rats made insulin deficient with streptozotocin and nicotinamide treatment) ameliorates detrimental changes in left ventricular structure and function. Results from this study are in agreement with previous investigations, suggesting that aminoguanidine is effective in preventing cardiac hypertrophy and arterial stiffening in experimental animal models of diabetes and emphasize the potential pathogenic role of AGEs in diabetic cardiomyopathy.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/24824
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 24
social impact