Modern technologies and accurate information on genetic diversity and structure are contributing to improve the plant breeding, in particular for all the minor species with a lack of data. Genetic diversity of 139 differ-ent Ficus carica L. genotypes collected from Italy and Croatia, and divided into two subgroups: uniferous (only main crop) and biferous (breba and main crop), was investigated using 49 microsatellite markers. A total of 70 alleles were generated, of which 64 (91.4%) showed a polymorphic pattern indicating high level of genetic diversity within the studied collection. The mean heterozygosity over the 64 single locus micro-satellites was 0.33 and the expected and observed averaged variance were 16.50 and 184.08, respectively. The 139 fig genotypes formed two clusters in the PCoA analysis, suggesting a division between Italian and Croatian genotypes. Moreover, the fig accessions could be divided into two main clusters based on the STRUCTURE analysis according to the biological type, uniferous or biferous, with partly overlapping varieties. In conclusion, our results demonstrated that molecular markers were able to discriminate among genotypes and useful for the authentication of fig tree varieties (homonymies and synonymies).
Analysis of genetic diversity of Ficus carica L. (Moraceae) collection using simple sequence repeat (SSR) markers
Marcotuli I.;Mazzeo A.;Nigro D.;Giove S. L.;Giancaspro A.;Colasuonno P.;Ferrara G.
;Gadaleta A.
2019-01-01
Abstract
Modern technologies and accurate information on genetic diversity and structure are contributing to improve the plant breeding, in particular for all the minor species with a lack of data. Genetic diversity of 139 differ-ent Ficus carica L. genotypes collected from Italy and Croatia, and divided into two subgroups: uniferous (only main crop) and biferous (breba and main crop), was investigated using 49 microsatellite markers. A total of 70 alleles were generated, of which 64 (91.4%) showed a polymorphic pattern indicating high level of genetic diversity within the studied collection. The mean heterozygosity over the 64 single locus micro-satellites was 0.33 and the expected and observed averaged variance were 16.50 and 184.08, respectively. The 139 fig genotypes formed two clusters in the PCoA analysis, suggesting a division between Italian and Croatian genotypes. Moreover, the fig accessions could be divided into two main clusters based on the STRUCTURE analysis according to the biological type, uniferous or biferous, with partly overlapping varieties. In conclusion, our results demonstrated that molecular markers were able to discriminate among genotypes and useful for the authentication of fig tree varieties (homonymies and synonymies).File | Dimensione | Formato | |
---|---|---|---|
Marcotuli ActaSci2019document.pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
2.06 MB
Formato
Adobe PDF
|
2.06 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.