The purpose of this study is to assess some of the variables determining the aldol-like condensation of pyruvic acid (1), a peroxide scavenger, in aqueous solution to parapyruvic acid and higher oligomers. Its stability is compared to 3 other α-keto carboxylic acids, 2 with sterically hindered methylene groups alpha to the keto functionality (2-3) and phenylglyoxylic acid (4) with no methylene group. High-performance liquid chromatography, nuclear magnetic resonance, and liquid chromatography mass spectroscopy techniques are used in the kinetics and product analyses. 1 condensation is concentration dependent and base catalyzed above pH 7, consistent with the reaction mechanism proceeding through the attack of the fraction of the methylene group, alpha to the keto group, in its anionic form, at the keto group of a second molecule of 1. The major product is confirmed to be parapyruvic acid, but higher-order oligomers are also observed. All 3 of the other α-keto carboxylic acids 2-4 are considerably less reactive, with 4 being completely stable. Stable solutions of 1 can be prepared by the use of relatively dilute solutions maintained at slightly acidic pH values. 1 prevents the oxidation of methionine on addition of hydrogen peroxide.
Some Preformulation Studies of Pyruvic Acid and Other α-Keto Carboxylic Acids in Aqueous Solution: Pharmaceutical Formulation Implications for These Peroxide Scavengers
Lopalco A.
;Denora N.;
2019-01-01
Abstract
The purpose of this study is to assess some of the variables determining the aldol-like condensation of pyruvic acid (1), a peroxide scavenger, in aqueous solution to parapyruvic acid and higher oligomers. Its stability is compared to 3 other α-keto carboxylic acids, 2 with sterically hindered methylene groups alpha to the keto functionality (2-3) and phenylglyoxylic acid (4) with no methylene group. High-performance liquid chromatography, nuclear magnetic resonance, and liquid chromatography mass spectroscopy techniques are used in the kinetics and product analyses. 1 condensation is concentration dependent and base catalyzed above pH 7, consistent with the reaction mechanism proceeding through the attack of the fraction of the methylene group, alpha to the keto group, in its anionic form, at the keto group of a second molecule of 1. The major product is confirmed to be parapyruvic acid, but higher-order oligomers are also observed. All 3 of the other α-keto carboxylic acids 2-4 are considerably less reactive, with 4 being completely stable. Stable solutions of 1 can be prepared by the use of relatively dilute solutions maintained at slightly acidic pH values. 1 prevents the oxidation of methionine on addition of hydrogen peroxide.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.