Monitoring the status and future trends in biodiversity can be prohibitively expensive using groundbased surveys. Consequently, significant effort is being invested in the use of satellite remote sensing to represent aspects of the proximate mechanisms (e.g., resource availability) that can be related to biodiversity surrogates (BS) such as species community descriptors. We explored the potential of very high resolution (VHR) satellite Earth observation (EO) features as proxies for habitat structural attributes that influence spatial variation in habitat quality and biodiversity change. In a semi-natural grassland mosaic of conservation concern in southern Italy, we employed a hierarchical nested sampling strategy to collect field and VHR-EO data across three spatial extent levels (landscape, patch and plot). Species incidence and abundance data were collected at the plot level for plant, insect and bird functional groups. Spectral and textural VHR-EO image features were derived from a Worldview-2 image. Three window sizes (grains) were tested for analysis and computation of textural features, guided by the perception limits of different organisms. The modelled relationships between VHR-EO features and BS responses differed across scales, suggesting that landscape, patch and plot levels are respectively most appropriate when dealing with birds, plants and insects. This research demonstrates the potential of VHR-EO for biodiversity mapping and habitat modelling, and highlights the importance of identifying the appropriate scale of analysis for specific taxonomic groups of interest. Further, textural features are important in the modelling of functional group-specific indices which represent BS in high conservation value habitat types, and provide a more direct link to species interaction networks and ecosystem functioning, than provided by traditional taxonomic diversity indices.

Very high resolution earth observation features for monitoring plant and animal community structure across multiple spatial scales in protected areas

Mairota P.
Writing – Original Draft Preparation
;
2015-01-01

Abstract

Monitoring the status and future trends in biodiversity can be prohibitively expensive using groundbased surveys. Consequently, significant effort is being invested in the use of satellite remote sensing to represent aspects of the proximate mechanisms (e.g., resource availability) that can be related to biodiversity surrogates (BS) such as species community descriptors. We explored the potential of very high resolution (VHR) satellite Earth observation (EO) features as proxies for habitat structural attributes that influence spatial variation in habitat quality and biodiversity change. In a semi-natural grassland mosaic of conservation concern in southern Italy, we employed a hierarchical nested sampling strategy to collect field and VHR-EO data across three spatial extent levels (landscape, patch and plot). Species incidence and abundance data were collected at the plot level for plant, insect and bird functional groups. Spectral and textural VHR-EO image features were derived from a Worldview-2 image. Three window sizes (grains) were tested for analysis and computation of textural features, guided by the perception limits of different organisms. The modelled relationships between VHR-EO features and BS responses differed across scales, suggesting that landscape, patch and plot levels are respectively most appropriate when dealing with birds, plants and insects. This research demonstrates the potential of VHR-EO for biodiversity mapping and habitat modelling, and highlights the importance of identifying the appropriate scale of analysis for specific taxonomic groups of interest. Further, textural features are important in the modelling of functional group-specific indices which represent BS in high conservation value habitat types, and provide a more direct link to species interaction networks and ecosystem functioning, than provided by traditional taxonomic diversity indices.
File in questo prodotto:
File Dimensione Formato  
Mairota et al_2015_International Journal of Applied Earth Observation and Geoinformation_37_100–105.pdf

non disponibili

Descrizione: Articolo su rivista
Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.05 MB
Formato Adobe PDF
1.05 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/240068
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 37
social impact