The authors of the above mentioned paper specify that the considered class of one-step symmetric Hermite-Obreshkov methods satisfies the property of conjugate-symplecticity up to order p + r, where r = 2 and p is the order of the method. This generalization of conjugate-symplecticity states that the methods conserve quadratic first integrals and the Hamiltonian function over time intervals of length O(h-r). Theorem 1 of the above mentioned paper is then replaced by a new one. All the other results in the paper do not change. Two new figures related to the already considered Kepler problem are also added.
Titolo: | Correction to: "On a class of Hermite-Obreshkov one-step methods with continuous spline extension" [Axioms 7 (3), 58, 2018] |
Autori: | |
Data di pubblicazione: | 2019 |
Rivista: | |
Handle: | http://hdl.handle.net/11586/238192 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
axioms-08-00059-v2.pdf | Documento in Post-print | ![]() | Open Access Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.