A growing amount of evidence suggests the involvement of ER (endoplasmic reticulum) stress in lipid metabolism and in the development of some liver diseases such as steatosis. The transcription factor SREBP-1 (sterol-regulatory-element-binding protein 1) modulates the expression of several enzymes involved in lipid synthesis. Previously, we showed that ER stress increased the SREBP-1a protein level in HepG2 cells, by inducing a cap-independent translation of SREBP-1a mRNA, through an IRES (internal ribosome entry site), located in its leader region. In the present paper, we report that the hnRNP A1 (heterogeneous nuclear ribonucleoprotein A1) interacts with 5′-UTR (untranslated region) of SREBP-1a mRNA, as an ITAF (IRES trans-acting factor), regulating SREBP-1a expression in HepG2 cells and in primary rat hepatocytes. Overexpression of hnRNP A1 in HepG2 cells and in rat hepatocytes increased both the SREBP-1a IRES activity and SREBP-1a protein level. Knockdown of hnRNP A1 by small interfering RNA reduced either the SREBP-1a IRES activity or SREBP-1a protein level. hnRNP A1 mediates the increase of SREBP-1a protein level and SREBP-1a IRES activity in Hep G2 cells and in rat hepatocytes upon tunicamycin- and thapsigargin-induced ER stress. The induced ER stress triggered the cytosolic relocation of hnRNP A1 and caused the increase in hnRNP A1 bound to the SREBP-1a 5′-UTR. These data indicate that hnRNP A1 participates in the IRES-dependent translation of SREBP-1a mRNA through RNA-protein interaction. A different content of hnRNP A1 was found in the nuclei from high-fat-diet-fed mice liver compared with standard-diet-fed mice liver, suggesting an involvement of ER stress-mediated hnRNP A1 subcellular redistribution on the onset of metabolic disorders. © The Authors Journal compilation © 2013 Biochemical Society.
hnRNP A1 mediates the activation of the IRES-dependent SREBP-1a mRNA translation in response to endoplasmic reticulum stress
Gnoni A.;
2013-01-01
Abstract
A growing amount of evidence suggests the involvement of ER (endoplasmic reticulum) stress in lipid metabolism and in the development of some liver diseases such as steatosis. The transcription factor SREBP-1 (sterol-regulatory-element-binding protein 1) modulates the expression of several enzymes involved in lipid synthesis. Previously, we showed that ER stress increased the SREBP-1a protein level in HepG2 cells, by inducing a cap-independent translation of SREBP-1a mRNA, through an IRES (internal ribosome entry site), located in its leader region. In the present paper, we report that the hnRNP A1 (heterogeneous nuclear ribonucleoprotein A1) interacts with 5′-UTR (untranslated region) of SREBP-1a mRNA, as an ITAF (IRES trans-acting factor), regulating SREBP-1a expression in HepG2 cells and in primary rat hepatocytes. Overexpression of hnRNP A1 in HepG2 cells and in rat hepatocytes increased both the SREBP-1a IRES activity and SREBP-1a protein level. Knockdown of hnRNP A1 by small interfering RNA reduced either the SREBP-1a IRES activity or SREBP-1a protein level. hnRNP A1 mediates the increase of SREBP-1a protein level and SREBP-1a IRES activity in Hep G2 cells and in rat hepatocytes upon tunicamycin- and thapsigargin-induced ER stress. The induced ER stress triggered the cytosolic relocation of hnRNP A1 and caused the increase in hnRNP A1 bound to the SREBP-1a 5′-UTR. These data indicate that hnRNP A1 participates in the IRES-dependent translation of SREBP-1a mRNA through RNA-protein interaction. A different content of hnRNP A1 was found in the nuclei from high-fat-diet-fed mice liver compared with standard-diet-fed mice liver, suggesting an involvement of ER stress-mediated hnRNP A1 subcellular redistribution on the onset of metabolic disorders. © The Authors Journal compilation © 2013 Biochemical Society.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.