Non-alcoholic fatty liver disease (NAFLD) is a chronic disease characterized by accumulation of lipid droplets in hepatocytes. Enhanced release of non-esterified fatty acids from adipose tissue accounts for a remarkable fraction of accumulated lipids. However, the de novo lipogenesis (DNL) is also implicated in the etiology of the NAFLD. Sterol Regulatory Element-Binding Protein-1 (SREBP-1) is a transcription factor modulating the expression of several lipogenic enzymes. In the present study, in order to investigate the effect of lipid droplet accumulation on DNL, we used a cellular model of steatosis represented by HepG2 cells cultured in a medium supplemented with free oleic and palmitic fatty acids (FFAs). We report that FFA supplementation induces the expression of genes coding for enzymes involved in the DNL as well as for the transcription factor SREBP-1a. The SREBP-1a mRNA translation, dependent on an internal ribosome entry site (IRES), and the SREBP-1a proteolytic cleavage are activated by FFAs. Furthermore, FFA treatment enhances the expression and the nucleus-cytosolic shuttling of hnRNP A1, a trans-activating factor of SREBP-1a IRES. The binding of hnRNP A1 to the SREBP-1a IRES is also increased upon FFA supplementation. The relocation of hnRNP A1 and the consequent increase of SREBP-1a translation are dependent on the p38 MAPK signal pathway, which is activated by FFAs. By RNA interference approach, we demonstrate that hnRNP A1 is implicated in the FFA-induced expression of SREBP-1a and of its target genes as well as in the lipid accumulation in cells.

Lipid accumulation stimulates the cap-independent translation of SREBP-1a mRNA by promoting hnRNP A1 binding to its 5′-UTR in a cellular model of hepatic steatosis

Testini M.;Gnoni A.;
2016-01-01

Abstract

Non-alcoholic fatty liver disease (NAFLD) is a chronic disease characterized by accumulation of lipid droplets in hepatocytes. Enhanced release of non-esterified fatty acids from adipose tissue accounts for a remarkable fraction of accumulated lipids. However, the de novo lipogenesis (DNL) is also implicated in the etiology of the NAFLD. Sterol Regulatory Element-Binding Protein-1 (SREBP-1) is a transcription factor modulating the expression of several lipogenic enzymes. In the present study, in order to investigate the effect of lipid droplet accumulation on DNL, we used a cellular model of steatosis represented by HepG2 cells cultured in a medium supplemented with free oleic and palmitic fatty acids (FFAs). We report that FFA supplementation induces the expression of genes coding for enzymes involved in the DNL as well as for the transcription factor SREBP-1a. The SREBP-1a mRNA translation, dependent on an internal ribosome entry site (IRES), and the SREBP-1a proteolytic cleavage are activated by FFAs. Furthermore, FFA treatment enhances the expression and the nucleus-cytosolic shuttling of hnRNP A1, a trans-activating factor of SREBP-1a IRES. The binding of hnRNP A1 to the SREBP-1a IRES is also increased upon FFA supplementation. The relocation of hnRNP A1 and the consequent increase of SREBP-1a translation are dependent on the p38 MAPK signal pathway, which is activated by FFAs. By RNA interference approach, we demonstrate that hnRNP A1 is implicated in the FFA-induced expression of SREBP-1a and of its target genes as well as in the lipid accumulation in cells.
File in questo prodotto:
File Dimensione Formato  
Lipid accumulation stimulate.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.14 MB
Formato Adobe PDF
2.14 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/237349
Citazioni
  • ???jsp.display-item.citation.pmc??? 15
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 22
social impact