Zinc (Zn) is a common heavy metal in polluted soils, as it is a widespread pollutant deriving both from natural sources and anthropogenic activities. The antioxidant tolerance/defence mechanisms against oxidative stress induced by subtoxic concentrations of Zn (50 and 150 μM ZnSO4) were studied in a widespread edible plant (lettuce; Lactuca sativa L.) and in an important model plant (Arabidopsis thaliana (L.) Heynh.). After 10 days (Arabidopsis) and 20 days (lettuce) of Zn exposure, Zn uptake/translocation was evaluated in both roots and shoots, while indicators of oxidative stress and stress intensity, total antioxidant capacity, and enzymatic and non-enzymatic antioxidative defence were measured in leaves. From an overall comparison of the two species, Zn root uptake in Arabidopsis subjected to 50 and 150 μM ZnSO4 was approximately 3- and 5-fold lower than in lettuce, while Zn translocation from roots to apical leaves was more efficient in Arabidopsis (23.7 vs 21.3% at 50 μM ZnSO4 and 19.3 vs 12.9% at 150 μM ZnSO4). Generally, a higher degree of Zn-induced oxidative stress (863.8 vs 21.3 μg g−1 FW H2O2 and 1.33 vs 0.75 μM g−1 FW MDAeq at 150 μM ZnSO4) and antioxidant response (441.2 vs 258.5 mM g−1 FW TEAC and 91.0 vs 54.9% RSA at 150 μM ZnSO4) were found in lettuce. The aim of this study is understanding (a) if subtoxic Zn levels can affect Zn uptake and translocation in the studied species and (b) if this eventual Zn absorption can influence plant oxidative status/antioxidant response. Considering that soil contamination by Zn can affect crop production and quality, the results of this research could be important for environmental, nutritional and human health issues.

Antioxidant responses of edible and model plant species subjected to subtoxic zinc concentrations

Concetta Eliana Gattullo;
2018

Abstract

Zinc (Zn) is a common heavy metal in polluted soils, as it is a widespread pollutant deriving both from natural sources and anthropogenic activities. The antioxidant tolerance/defence mechanisms against oxidative stress induced by subtoxic concentrations of Zn (50 and 150 μM ZnSO4) were studied in a widespread edible plant (lettuce; Lactuca sativa L.) and in an important model plant (Arabidopsis thaliana (L.) Heynh.). After 10 days (Arabidopsis) and 20 days (lettuce) of Zn exposure, Zn uptake/translocation was evaluated in both roots and shoots, while indicators of oxidative stress and stress intensity, total antioxidant capacity, and enzymatic and non-enzymatic antioxidative defence were measured in leaves. From an overall comparison of the two species, Zn root uptake in Arabidopsis subjected to 50 and 150 μM ZnSO4 was approximately 3- and 5-fold lower than in lettuce, while Zn translocation from roots to apical leaves was more efficient in Arabidopsis (23.7 vs 21.3% at 50 μM ZnSO4 and 19.3 vs 12.9% at 150 μM ZnSO4). Generally, a higher degree of Zn-induced oxidative stress (863.8 vs 21.3 μg g−1 FW H2O2 and 1.33 vs 0.75 μM g−1 FW MDAeq at 150 μM ZnSO4) and antioxidant response (441.2 vs 258.5 mM g−1 FW TEAC and 91.0 vs 54.9% RSA at 150 μM ZnSO4) were found in lettuce. The aim of this study is understanding (a) if subtoxic Zn levels can affect Zn uptake and translocation in the studied species and (b) if this eventual Zn absorption can influence plant oxidative status/antioxidant response. Considering that soil contamination by Zn can affect crop production and quality, the results of this research could be important for environmental, nutritional and human health issues.
File in questo prodotto:
File Dimensione Formato  
FINALE Sofo et al.2018.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 927.07 kB
Formato Adobe PDF
927.07 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11586/234699
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 8
social impact