Let C be a smooth projective curve of genus g≥ 2. Fix an integer r≥ 0 , and let k̲=(k_1,…,k_n) be a sequence of positive integers with ∑k_i=g-1. In this paper, we study n-pointed curves (C, p_1, … , p_n) such that the line bundle L:=OC(∑k_ip_i) is a theta-characteristic with h(C, L) ≥ r+ 1 and h0(C,L)≡r+1(mod2). We prove that they describe a sublocus G_g^r(k̲) of M_{g,n} having codimension at most g-1+r(r-1)/2. Moreover, for any r≥ 0 , k̲ as above, and g greater than an explicit integer g(r) depending on r, we present irreducible components of G_g^r(k̲) attaining the maximal codimension in M_{g,n}, so that the bound turns out to be sharp.

On large theta-characteristics with prescribed vanishing

Bastianelli F.;
2019-01-01

Abstract

Let C be a smooth projective curve of genus g≥ 2. Fix an integer r≥ 0 , and let k̲=(k_1,…,k_n) be a sequence of positive integers with ∑k_i=g-1. In this paper, we study n-pointed curves (C, p_1, … , p_n) such that the line bundle L:=OC(∑k_ip_i) is a theta-characteristic with h(C, L) ≥ r+ 1 and h0(C,L)≡r+1(mod2). We prove that they describe a sublocus G_g^r(k̲) of M_{g,n} having codimension at most g-1+r(r-1)/2. Moreover, for any r≥ 0 , k̲ as above, and g greater than an explicit integer g(r) depending on r, we present irreducible components of G_g^r(k̲) attaining the maximal codimension in M_{g,n}, so that the bound turns out to be sharp.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/233566
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact