We propose a definition of granular count realized in the presence of uncertain data modeled through possibility distributions. We show that the resulting counts are fuzzy intervals in the domain of natural numbers. Based on this result, we devise two algorithms for granular counting: an exact counting algorithm with quadratic-time complexity and an approximate counting algorithm with linear-time complexity. We compare the two algorithms on synthetic data and show their application to a Bioinformatics scenario concerning the assessment of gene expressions in cells.
Granular counting of uncertain data
Mencar C.
;
2020-01-01
Abstract
We propose a definition of granular count realized in the presence of uncertain data modeled through possibility distributions. We show that the resulting counts are fuzzy intervals in the domain of natural numbers. Based on this result, we devise two algorithms for granular counting: an exact counting algorithm with quadratic-time complexity and an approximate counting algorithm with linear-time complexity. We compare the two algorithms on synthetic data and show their application to a Bioinformatics scenario concerning the assessment of gene expressions in cells.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2020 - Granular counting of uncertain data - Mencar, Pedrycz-annotated.pdf
non disponibili
Tipologia:
Documento in Versione Editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.55 MB
Formato
Adobe PDF
|
1.55 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
postprint.pdf
accesso aperto
Descrizione: Preprint (con DOI)
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
1 MB
Formato
Adobe PDF
|
1 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.