Multi-derivative one-step methods based upon Euler–Maclaurin integration formulae are considered for the solution of canonical Hamiltonian dynamical systems. Despite the negative result that simplecticity may not be attained by any multi-derivative Runge–Kutta methods, we show that the Euler–MacLaurin method of order p is conjugate-symplectic up to order p+2. This feature entitles them to play a role in the context of geometric integration and, to make their implementation competitive with the existing integrators, we explore the possibility of computing the underlying higher order derivatives with the aid of the Infinity Computer.

Conjugate-symplecticity properties of Euler–Maclaurin methods and their implementation on the Infinity Computer

Iavernaro F.;Mazzia F.
;
2020

Abstract

Multi-derivative one-step methods based upon Euler–Maclaurin integration formulae are considered for the solution of canonical Hamiltonian dynamical systems. Despite the negative result that simplecticity may not be attained by any multi-derivative Runge–Kutta methods, we show that the Euler–MacLaurin method of order p is conjugate-symplectic up to order p+2. This feature entitles them to play a role in the context of geometric integration and, to make their implementation competitive with the existing integrators, we explore the possibility of computing the underlying higher order derivatives with the aid of the Infinity Computer.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0168927419301631-main.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.32 MB
Formato Adobe PDF
2.32 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
1807.10952.pdf

accesso aperto

Descrizione: arxiv
Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 4.16 MB
Formato Adobe PDF
4.16 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11586/231251
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 19
social impact