Replacing fossil-C based plastics with those derived from renewable-C is one of the goals of the modern polymer industry. 2,5-Furan dicarboxylic acid (2,5-FDCA) is a candidate to substitute terephthalic acid as comonomer for polyesters. 2,5-FDCA is usually produced from C6 sugars. Carboxylation of 2-furancarboxylic acid (2-FCA) to 2,5-FDCA is an alternative synthetic approach to such monomer for polyethene furoate (PEF) preparation. In this work, several inorganic carbonates have been tested in the 2-FCA carboxylation in presence and absence of CO 2 . A key copper intermediate has been synthesized and fully characterized that is able to increase the acidity and, thus, the reactivity of 5-H towards a carbonate species. Carboxylation occurs at 93% yield in absence of CO 2 . The role of metal salts and CO 2 were investigated. The conversion yield of 2-FCA into the dicarboxylic acid is related to the charge density on the metal cation, increasing with lower charge-density.
Valorization of C5 polyols by direct carboxylation to FDCA: Synthesis and characterization of a key intermediate and role of carbon dioxide
Nocito F.;Ditaranto N.;Dibenedetto A.
2019-01-01
Abstract
Replacing fossil-C based plastics with those derived from renewable-C is one of the goals of the modern polymer industry. 2,5-Furan dicarboxylic acid (2,5-FDCA) is a candidate to substitute terephthalic acid as comonomer for polyesters. 2,5-FDCA is usually produced from C6 sugars. Carboxylation of 2-furancarboxylic acid (2-FCA) to 2,5-FDCA is an alternative synthetic approach to such monomer for polyethene furoate (PEF) preparation. In this work, several inorganic carbonates have been tested in the 2-FCA carboxylation in presence and absence of CO 2 . A key copper intermediate has been synthesized and fully characterized that is able to increase the acidity and, thus, the reactivity of 5-H towards a carbonate species. Carboxylation occurs at 93% yield in absence of CO 2 . The role of metal salts and CO 2 were investigated. The conversion yield of 2-FCA into the dicarboxylic acid is related to the charge density on the metal cation, increasing with lower charge-density.File | Dimensione | Formato | |
---|---|---|---|
JCOU_2019.pdf
non disponibili
Tipologia:
Documento in Versione Editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
3.06 MB
Formato
Adobe PDF
|
3.06 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.