Let X be a matrix with entries in a polynomial ring over an algebraically closed field K. We prove that, if the entries of X outside some (t×t)-submatrix are algebraically dependent over K, the arithmetical rank of the ideal It(X) of t-minors of X drops at least by one with respect to the generic case; under suitable assumptions, it drops at least by k if X has k zero entries. This upper bound turns out to be sharp if char K=0, since it then coincides with the lower bound provided by the local cohomological dimension.

On determinantal ideals and algebraic dependence

Margherita Barile
;
Antonio Macchia
2019-01-01

Abstract

Let X be a matrix with entries in a polynomial ring over an algebraically closed field K. We prove that, if the entries of X outside some (t×t)-submatrix are algebraically dependent over K, the arithmetical rank of the ideal It(X) of t-minors of X drops at least by one with respect to the generic case; under suitable assumptions, it drops at least by k if X has k zero entries. This upper bound turns out to be sharp if char K=0, since it then coincides with the lower bound provided by the local cohomological dimension.
File in questo prodotto:
File Dimensione Formato  
On determinantal ideals and algebraic dependence.pdf

non disponibili

Descrizione: Articolo completo
Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.03 MB
Formato Adobe PDF
1.03 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/230757
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact