We report on the observation of spin-dependent optically dressed states and the optical Stark effect on an individual Mn spin in a semiconductor quantum dot. The vacuum-to-exciton or the exciton-to-biexciton transitions in a Mn-doped quantum dot are optically dressed by a strong laser field, and the resulting spectral signature is measured in photoluminescence. We demonstrate that the energy of any spin state of a Mn atom can be independently tuned by using the optical Stark effect induced by a control laser. High resolution spectroscopy reveals a power-, polarization-, and detuning-dependent Autler-Townes splitting of each optical transition of the Mn-doped quantum dot. This experiment demonstrates an optical resonant control of the exciton-Mn system.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | Optical stark effect and dressed exciton states in a Mn-doped CdTe quantum dot |
Autori: | |
Data di pubblicazione: | 2011 |
Rivista: | |
Abstract: | We report on the observation of spin-dependent optically dressed states and the optical Stark effect on an individual Mn spin in a semiconductor quantum dot. The vacuum-to-exciton or the exciton-to-biexciton transitions in a Mn-doped quantum dot are optically dressed by a strong laser field, and the resulting spectral signature is measured in photoluminescence. We demonstrate that the energy of any spin state of a Mn atom can be independently tuned by using the optical Stark effect induced by a control laser. High resolution spectroscopy reveals a power-, polarization-, and detuning-dependent Autler-Townes splitting of each optical transition of the Mn-doped quantum dot. This experiment demonstrates an optical resonant control of the exciton-Mn system. |
Handle: | http://hdl.handle.net/11586/230553 |
Appare nelle tipologie: | 1.1 Articolo in rivista |