A multifrequency electron paramagnetic resonance, EPR, study has been carried out on TiO2 nanocrystals (NCs) capped by organic moieties prepared according to both a nonhydrolytic and a hydrolytic procedure, respectively, with spherical or rodlike shape. In particular, EPR measurements have been performed in the 9-95 GHz range, at various temperatures, and with and without UV irradiation. The behavior of the electrons promoted in the conduction band by UV irradiation and of the holes in the valence band has been monitored by means of the generated paramagnetic species that are detectable by EPR, thus enabling the identification of the different sites at which the charges are trapped. In particular, an EPR signal which can be considered a mark of the localization of the photoinduced charge on a carbon of the capping molecule is observed. The presence of paramagnetic species on the surfaces of TiO2 NCs has been used to account for the catalytic performance of such a class of nanostructured material which has been recently proven to present a high catalytic efficiency. The observed carbon radical is suggested to be responsible for the higher catalytic activity of organic capped nanosized catalysts. Indeed, upon irradiation, the intensity of this signal with respect to the bulk Ti3+ signal is larger in the NCs characterized by higher photocatalytic activity; namely, those prepared with a hydrolytic procedure. © 2009 American Chemical Society.

A multifrequency EPR study on organic-capped anatase TiO2 nanocrystals

Curri, M. L.;Agostiano, A.;
2009-01-01

Abstract

A multifrequency electron paramagnetic resonance, EPR, study has been carried out on TiO2 nanocrystals (NCs) capped by organic moieties prepared according to both a nonhydrolytic and a hydrolytic procedure, respectively, with spherical or rodlike shape. In particular, EPR measurements have been performed in the 9-95 GHz range, at various temperatures, and with and without UV irradiation. The behavior of the electrons promoted in the conduction band by UV irradiation and of the holes in the valence band has been monitored by means of the generated paramagnetic species that are detectable by EPR, thus enabling the identification of the different sites at which the charges are trapped. In particular, an EPR signal which can be considered a mark of the localization of the photoinduced charge on a carbon of the capping molecule is observed. The presence of paramagnetic species on the surfaces of TiO2 NCs has been used to account for the catalytic performance of such a class of nanostructured material which has been recently proven to present a high catalytic efficiency. The observed carbon radical is suggested to be responsible for the higher catalytic activity of organic capped nanosized catalysts. Indeed, upon irradiation, the intensity of this signal with respect to the bulk Ti3+ signal is larger in the NCs characterized by higher photocatalytic activity; namely, those prepared with a hydrolytic procedure. © 2009 American Chemical Society.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/229151
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 24
social impact