The light emitted by all galaxies over the history of the Universe produces the extragalactic background light (EBL) at ultraviolet, optical, and infrared wavelengths. The EBL is a source of opacity for gamma rays via photon-photon interactions, leaving an imprint in the spectra of distant gamma-ray sources. We measured this attenuation using 739 active galaxies and one gamma-ray burst detected by the Fermi Large Area Telescope. This allowed us to reconstruct the evolution of the EBL and determine the star formation history of the Universe over 90% of cosmic time. Our star formation history is consistent with independent measurements from galaxy surveys, peaking at redshift z ~ 2. Upper limits of the EBL at the epoch of reionization suggest a turnover in the abundance of faint galaxies at z ~ 6.
A gamma-ray determination of the Universe's star formation history
L. Di Venere;C. Favuzzi;P. Fusco;F. Gargano;F. Giordano;F. Loparco;M. N. Mazziotta;S. Raino`;P. Spinelli
2018-01-01
Abstract
The light emitted by all galaxies over the history of the Universe produces the extragalactic background light (EBL) at ultraviolet, optical, and infrared wavelengths. The EBL is a source of opacity for gamma rays via photon-photon interactions, leaving an imprint in the spectra of distant gamma-ray sources. We measured this attenuation using 739 active galaxies and one gamma-ray burst detected by the Fermi Large Area Telescope. This allowed us to reconstruct the evolution of the EBL and determine the star formation history of the Universe over 90% of cosmic time. Our star formation history is consistent with independent measurements from galaxy surveys, peaking at redshift z ~ 2. Upper limits of the EBL at the epoch of reionization suggest a turnover in the abundance of faint galaxies at z ~ 6.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.