In this paper, we will describe a new factorization algorithm based on the continuous representation of Gauss sums, generalizable to orders j > 2. Such an algorithm allows one, for the first time, to find all the factors of a number N in a single run without precalculating the ratio N/l, where l are all the possible trial factors. Continuous truncated exponential sums turn out to be a powerful tool for distinguishing factors from non-factors (we also suggest, with regard to this topic, to read an interesting paper by S. Wölk et al. also published in this issue [Wölk, Feiler, Schleich, J. Mod. Opt. in press]) and factorizing different numbers at the same time. We will also describe two possible M-path optical interferometers, which can be used to experimentally realize this algorithm: a liquid crystal grating and a generalized symmetric Michelson interferometer.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | New factorization algorithm based on a continuous representation of truncated Gauss sums |
Autori: | |
Data di pubblicazione: | 2009 |
Rivista: | |
Abstract: | In this paper, we will describe a new factorization algorithm based on the continuous representation of Gauss sums, generalizable to orders j > 2. Such an algorithm allows one, for the first time, to find all the factors of a number N in a single run without precalculating the ratio N/l, where l are all the possible trial factors. Continuous truncated exponential sums turn out to be a powerful tool for distinguishing factors from non-factors (we also suggest, with regard to this topic, to read an interesting paper by S. Wölk et al. also published in this issue [Wölk, Feiler, Schleich, J. Mod. Opt. in press]) and factorizing different numbers at the same time. We will also describe two possible M-path optical interferometers, which can be used to experimentally realize this algorithm: a liquid crystal grating and a generalized symmetric Michelson interferometer. |
Handle: | http://hdl.handle.net/11586/22847 |
Appare nelle tipologie: | 1.1 Articolo in rivista |