We study a variant of a recently proposed non-equilibrium stochastic model for supercoiling-dependent transcription in DNA. In the case of a circular DNA molecule with overall positive supercoiling, we find a non-equilibrium phase transition between an absorbing phase, where all genes are switched off due to the supercoiling, and an active phase with a non-zero transcription rate. Mean field theory predicts that the transition should be continuous at a critical value of the background supercoiling, and we focus our analysis on this case. Our simulations suggest that the switch between the transcribed and silent phases may actually be a fluctuation-induced discontinuous transition, where the jump in the transcription rate decreases with the number of genes in the system.
Non-equilibrium phase transition in a model for supercoiling-dependent DNA transcription
Gonnella, G.;
2018-01-01
Abstract
We study a variant of a recently proposed non-equilibrium stochastic model for supercoiling-dependent transcription in DNA. In the case of a circular DNA molecule with overall positive supercoiling, we find a non-equilibrium phase transition between an absorbing phase, where all genes are switched off due to the supercoiling, and an active phase with a non-zero transcription rate. Mean field theory predicts that the transition should be continuous at a critical value of the background supercoiling, and we focus our analysis on this case. Our simulations suggest that the switch between the transcribed and silent phases may actually be a fluctuation-induced discontinuous transition, where the jump in the transcription rate decreases with the number of genes in the system.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.