There has been increasing interest in the utility of transcranial electrical stimulation as a tool to enhance cognitive abilities. In the domain of face perception, enhancements have been reported for both transcranial direct current stimulation (tDCS) and high-frequency transcranial random noise stimulation (tRNS) targeting the occipitotemporal cortex. In a series of two experiments, we attempted to replicate these findings for face identity perception, and extend on previous studies, to determine if similar enhancements are also observed for object and facial expression perception. In Experiment 1, using a single blind, between-subjects design in healthy volunteers (N = 53), we examined whether anodal tDCS over the occipitotemporal cortex enhanced performance on tasks involving perception of face identity, facial expression, and object stimuli, when compared to sham stimulation. We failed to replicate previous findings of enhanced performance on face and object perception, nor extend findings to facial expression perception. In Experiment 2, using a single blind, between-subjects design (N = 39), we examined the effect of high-frequency tRNS over the occipitotemporal cortex using the same three tasks employed in Experiment 1. We failed to replicate previous findings of enhanced face perception following high-frequency tRNS over the occipitotemporal cortex, relative to sham stimulation (although we used different stimulation parameters to that employed in a previous study). We also found no evidence of enhanced facial expression and object perception following high-frequency tRNS. The findings align with a growing body of studies that have failed to replicate previously reported enhancements following administration of tDCS and hint for different efficacy of, on first sight, related stimulation protocols. Future studies should explore the foundation of these differential effects in greater detail.

Anodal tDCS and High-Frequency tRNS Targeting the Occipitotemporal Cortex Do Not Always Enhance Face Perception

Rivolta, Davide
2019-01-01

Abstract

There has been increasing interest in the utility of transcranial electrical stimulation as a tool to enhance cognitive abilities. In the domain of face perception, enhancements have been reported for both transcranial direct current stimulation (tDCS) and high-frequency transcranial random noise stimulation (tRNS) targeting the occipitotemporal cortex. In a series of two experiments, we attempted to replicate these findings for face identity perception, and extend on previous studies, to determine if similar enhancements are also observed for object and facial expression perception. In Experiment 1, using a single blind, between-subjects design in healthy volunteers (N = 53), we examined whether anodal tDCS over the occipitotemporal cortex enhanced performance on tasks involving perception of face identity, facial expression, and object stimuli, when compared to sham stimulation. We failed to replicate previous findings of enhanced performance on face and object perception, nor extend findings to facial expression perception. In Experiment 2, using a single blind, between-subjects design (N = 39), we examined the effect of high-frequency tRNS over the occipitotemporal cortex using the same three tasks employed in Experiment 1. We failed to replicate previous findings of enhanced face perception following high-frequency tRNS over the occipitotemporal cortex, relative to sham stimulation (although we used different stimulation parameters to that employed in a previous study). We also found no evidence of enhanced facial expression and object perception following high-frequency tRNS. The findings align with a growing body of studies that have failed to replicate previously reported enhancements following administration of tDCS and hint for different efficacy of, on first sight, related stimulation protocols. Future studies should explore the foundation of these differential effects in greater detail.
File in questo prodotto:
File Dimensione Formato  
34. Willis_FN_2019.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 832.02 kB
Formato Adobe PDF
832.02 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/228026
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact