Mast cells are important modifiers of prostate tumor microenvironment. The fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) system plays a non-redundant autocrine/paracrine role in the growth, vascularization and progression of prostate tumors. Accordingly, the FGF antagonist long pentraxin-3 (PTX3) and the PTX3-derived small molecule FGF-trap NSC12 have been shown to inhibit the growth and vascularization of different FGF-dependent tumor types, including prostate cancer. In this study, we show that recombinant FGF2 is able to cause mast cell recruitment in vivo in the Matrigel plug assay. Conversely, PTX3 overexpression in transgenic mice or treatment with the FGF inhibitor NSC12 result in a significant inhibition of the growth and vascularization of TRAMP-C2 tumor grafts, a murine model of prostate cancer, that were paralleled by a decrease of mast cell infiltrate into the lesion. These data confirm and extend previous observations about the capacity of mast cells to respond chemotactically to FGF2 stimulation and provide evidence about a relationship among mast cell recruitment, angiogenesis, and tumor growth in human prostate adenocarcinoma.

Fibroblast growth factor modulates mast cell recruitment in a murine model of prostate cancer

Tamma, Roberto;Ruggieri, Simona;Ribatti, Domenico
2017-01-01

Abstract

Mast cells are important modifiers of prostate tumor microenvironment. The fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) system plays a non-redundant autocrine/paracrine role in the growth, vascularization and progression of prostate tumors. Accordingly, the FGF antagonist long pentraxin-3 (PTX3) and the PTX3-derived small molecule FGF-trap NSC12 have been shown to inhibit the growth and vascularization of different FGF-dependent tumor types, including prostate cancer. In this study, we show that recombinant FGF2 is able to cause mast cell recruitment in vivo in the Matrigel plug assay. Conversely, PTX3 overexpression in transgenic mice or treatment with the FGF inhibitor NSC12 result in a significant inhibition of the growth and vascularization of TRAMP-C2 tumor grafts, a murine model of prostate cancer, that were paralleled by a decrease of mast cell infiltrate into the lesion. These data confirm and extend previous observations about the capacity of mast cells to respond chemotactically to FGF2 stimulation and provide evidence about a relationship among mast cell recruitment, angiogenesis, and tumor growth in human prostate adenocarcinoma.
File in questo prodotto:
File Dimensione Formato  
RONCA2017.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 3.45 MB
Formato Adobe PDF
3.45 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/227999
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 25
  • ???jsp.display-item.citation.isi??? ND
social impact