In real-world networks, information from source to destination does not only flow along the shortest path connecting them, but can flow along any alternative route. Communicability is a network metric that accounts for this issue and, especially in diffusion-like processes, provides a reliable measure of the ease of communication between node pairs. Accordingly, communicability appears to be promising for highlighting the disruption of connectivity among brain regions, caused by the white matter degeneration due to Alzheimer's disease (AD). Such a degeneration can be captured by digital imaging techniques, in particular diffusion tensor imaging (DTI), which allow to build the brain connectivity network through tractography algorithms and studying its complexity through graph theory. In this study, a cohort of 122 DTI scans, composed by 52 healthy control (HC) subjects, 40 AD patients and 30 mild cognitive impairment (MCI) converter subjects, from Alzheimer's Disease Neuroimaging Initiative (ADNI) database, has been employed to study the suitability of communicability to serve as discriminant factor for AD. We developed a two-fold investigation. On one hand, a statistical analysis has been carried out to ascertain the information content provided by communicability to detect the brain regions mostly affected by the disease: node pairs with statistical significant different communicability have been found, corresponding.

Communicability disruption in Alzheimer's disease connectivity networks

Lella, Eufemia;Amoroso, Nicola;Lombardi, Angela;Maggipinto, Tommaso;Tangaro, Sabina;Bellotti, Roberto
2018-01-01

Abstract

In real-world networks, information from source to destination does not only flow along the shortest path connecting them, but can flow along any alternative route. Communicability is a network metric that accounts for this issue and, especially in diffusion-like processes, provides a reliable measure of the ease of communication between node pairs. Accordingly, communicability appears to be promising for highlighting the disruption of connectivity among brain regions, caused by the white matter degeneration due to Alzheimer's disease (AD). Such a degeneration can be captured by digital imaging techniques, in particular diffusion tensor imaging (DTI), which allow to build the brain connectivity network through tractography algorithms and studying its complexity through graph theory. In this study, a cohort of 122 DTI scans, composed by 52 healthy control (HC) subjects, 40 AD patients and 30 mild cognitive impairment (MCI) converter subjects, from Alzheimer's Disease Neuroimaging Initiative (ADNI) database, has been employed to study the suitability of communicability to serve as discriminant factor for AD. We developed a two-fold investigation. On one hand, a statistical analysis has been carried out to ascertain the information content provided by communicability to detect the brain regions mostly affected by the disease: node pairs with statistical significant different communicability have been found, corresponding.
File in questo prodotto:
File Dimensione Formato  
2019JCNLella.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.09 MB
Formato Adobe PDF
1.09 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/227582
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 22
social impact