Over the last years, great efforts have been devoted to develop effective gluten detoxification strategies with a consequent detrimental alteration of the technological properties as well. Obtaining low-gluten products without affecting the rheological properties of wheat could still be considered a new challenge to face. In this investigation, we presented a comprehensive characterization of durum wheat genotypes aimed at identifying low gluten ones, which combine the potential lower toxicity/immunogenicity with conserved yield and rheological properties to encompass the perspective usability for bread or pasta making. A preliminary profiling of gluten proteins was accomplished by immunoassay-based quantification and liquid chromatography coupled to UV detection, focusing on the gliadin fraction as main responsible for immunoreactivity in celiac disease patients. In addition, data on grain protein content, grain yield per spike, dry gluten and gluten index were collected in order to provide complementary information about productivity-related traits and quali-quantitative characteristics related to wheat nutritional value and its technological properties. The whole pool of data was statistically evaluated driving to the selection of a preferred list of candidate low-toxicity genotypes that were subjected to in-vitro simulated gastroduodenal digestion and untargeted HR-MS/MS peptide identification. Finally, an in-silico risk assessment of potential toxicity for celiac disease patients was performed according to the most recent guidance provided by EFSA.

Scouting for Naturally Low-Toxicity Wheat Genotypes by a Multidisciplinary Approach

Gadaleta, Agata;Nigro, Domenica;Montemurro, Nicola;
2019-01-01

Abstract

Over the last years, great efforts have been devoted to develop effective gluten detoxification strategies with a consequent detrimental alteration of the technological properties as well. Obtaining low-gluten products without affecting the rheological properties of wheat could still be considered a new challenge to face. In this investigation, we presented a comprehensive characterization of durum wheat genotypes aimed at identifying low gluten ones, which combine the potential lower toxicity/immunogenicity with conserved yield and rheological properties to encompass the perspective usability for bread or pasta making. A preliminary profiling of gluten proteins was accomplished by immunoassay-based quantification and liquid chromatography coupled to UV detection, focusing on the gliadin fraction as main responsible for immunoreactivity in celiac disease patients. In addition, data on grain protein content, grain yield per spike, dry gluten and gluten index were collected in order to provide complementary information about productivity-related traits and quali-quantitative characteristics related to wheat nutritional value and its technological properties. The whole pool of data was statistically evaluated driving to the selection of a preferred list of candidate low-toxicity genotypes that were subjected to in-vitro simulated gastroduodenal digestion and untargeted HR-MS/MS peptide identification. Finally, an in-silico risk assessment of potential toxicity for celiac disease patients was performed according to the most recent guidance provided by EFSA.
File in questo prodotto:
File Dimensione Formato  
Pilolli et al Scientific Reports 2019.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 2.21 MB
Formato Adobe PDF
2.21 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/227288
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 19
social impact