The alteration of water balance and related disorders has emerged as being strictly linked to the state of activation of the vasopressin-aquaporin-2 (vasopressin-AQP2) pathway. The lack of responsiveness of the kidney to the vasopressin action impairs its ability to concentrate the urine, resulting in polyuria, polydipsia, and risk of severe dehydration for patients. Conversely, non-osmotic release of vasopressin is associated with an increase in water permeability in the renal collecting duct, producing water retention and increasing the circulatory blood volume. This review highlights some of the new insights and recent advances in therapeutic intervention targeting the dysfunctions in the vasopressin-AQP2 pathway causing diseases characterized by water balance disorders such as congenital nephrogenic diabetes insipidus, syndrome of inappropriate antidiuretic hormone secretion, nephrogenic syndrome of inappropriate antidiuresis, and autosomal dominant polycystic kidney disease. The recent clinical data suggest that targeting the vasopressin-AQP2 axis can provide therapeutic benefits in patients with water balance disorders.
Vasopressin-aquaporin-2 pathway: recent advances in understanding water balance disorders
Ranieri, Marianna;Di Mise, Annarita;Tamma, Grazia;Valenti, Giovanna
2019-01-01
Abstract
The alteration of water balance and related disorders has emerged as being strictly linked to the state of activation of the vasopressin-aquaporin-2 (vasopressin-AQP2) pathway. The lack of responsiveness of the kidney to the vasopressin action impairs its ability to concentrate the urine, resulting in polyuria, polydipsia, and risk of severe dehydration for patients. Conversely, non-osmotic release of vasopressin is associated with an increase in water permeability in the renal collecting duct, producing water retention and increasing the circulatory blood volume. This review highlights some of the new insights and recent advances in therapeutic intervention targeting the dysfunctions in the vasopressin-AQP2 pathway causing diseases characterized by water balance disorders such as congenital nephrogenic diabetes insipidus, syndrome of inappropriate antidiuretic hormone secretion, nephrogenic syndrome of inappropriate antidiuresis, and autosomal dominant polycystic kidney disease. The recent clinical data suggest that targeting the vasopressin-AQP2 axis can provide therapeutic benefits in patients with water balance disorders.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.