We demonstrated that floods can induce severe microbiological contamination of drinking water from wells and suggest strategies to better address water safety plans for groundwater drinking supplies. Since 2002, the Italian Water Research Institute (IRSA) has detected hepatitis A virus, adenovirus, rotavirus, norovirus, and enterovirus in water samples from wells in the Salento peninsula, southern Italy. Perturbations in the ionic strength in water flow can initiate strong virus detachments from terra rossa sediments in karst fractures. This study therefore explored the potential health impacts of prolonged runoff injections in Salento groundwater caused by severe flooding during October 2018. A mathematical model for virus fate and transport in fractures was applied to determine the impact of floodwater injection on groundwater quality by incorporating mechanisms that affect virus attachment/detachment and survival in flowing water at microscale. This model predicted target concentrations of enteric viruses that can occur unexpectedly in wells at considerable distances (5-8 km) from the runoff injection site (sinkhole). Subsequently, the health impact of viruses in drinking water supplied from contaminated wells was estimated during the summer on the Salento coast. Specific unpublished dose response model coefficients were proposed to determine the infection probabilities for Echo-11 and Polio 1 enteroviruses through ingestion. The median (50%) risk of infection was estimated at 6.3 . 10(-3) with an uncertainty of 23%. The predicted burden of diseases was 4.89 disability adjusted life years per year, i.e., twice the maximum tolerable disease burden. The results highlight the requirement for additional water disinfection treatments in Salento prior to the distribution of drinking water. Moreover, monthly controls of enteric virus occurrence in water from wells should be imposed by a new water framework directive in semiarid regions because of the vulnerability of karst carbonate aquifers to prolonged floodwater injections and enteric virus contamination. (C) 2019 Elsevier BM. All rights reserved.

We demonstrated that floods can induce severe microbiological contamination of drinking water from wells and suggest strategies to better address water safety plans for groundwater drinking supplies. Since 2002, the Italian Water Research Institute (IRSA) has detected hepatitis A virus, adenovirus, rotavirus, norovirus, and enterovirus in water samples from wells in the Salento peninsula, southern Italy. Perturbations in the ionic strength in water flow can initiate strong virus detachments from terra rossa sediments in karst fractures. This study therefore explored the potential health impacts of prolonged runoff injections in Salento groundwater caused by severe flooding during October 2018. A mathematical model for virus fate and transport in fractures was applied to determine the impact of floodwater injection on groundwater quality by incorporating mechanisms that affect virus attachment/detachment and survival in flowing water at microscale. This model predicted target concentrations of enteric viruses that can occur unexpectedly in wells at considerable distances (5–8 km) from the runoff injection site (sinkhole). Subsequently, the health impact of viruses in drinking water supplied from contaminated wells was estimated during the summer on the Salento coast. Specific unpublished dose-response model coefficients were proposed to determine the infection probabilities for Echo-11 and Polio 1 enteroviruses through ingestion. The median (50%) risk of infection was estimated at 6.3 · 10 −3 with an uncertainty of 23%. The predicted burden of diseases was 4.89 disability adjusted life years per year, i.e., twice the maximum tolerable disease burden. The results highlight the requirement for additional water disinfection treatments in Salento prior to the distribution of drinking water. Moreover, monthly controls of enteric virus occurrence in water from wells should be imposed by a new water framework directive in semiarid regions because of the vulnerability of karst carbonate aquifers to prolonged floodwater injections and enteric virus contamination.

Human health risk assessment for the occurrence of enteric viruses in drinking water from wells: Role of flood runoff injections

De Giglio, Osvalda;Scrascia, Maria;Pazzani, Carlo;Montagna, Maria Teresa
2019

Abstract

We demonstrated that floods can induce severe microbiological contamination of drinking water from wells and suggest strategies to better address water safety plans for groundwater drinking supplies. Since 2002, the Italian Water Research Institute (IRSA) has detected hepatitis A virus, adenovirus, rotavirus, norovirus, and enterovirus in water samples from wells in the Salento peninsula, southern Italy. Perturbations in the ionic strength in water flow can initiate strong virus detachments from terra rossa sediments in karst fractures. This study therefore explored the potential health impacts of prolonged runoff injections in Salento groundwater caused by severe flooding during October 2018. A mathematical model for virus fate and transport in fractures was applied to determine the impact of floodwater injection on groundwater quality by incorporating mechanisms that affect virus attachment/detachment and survival in flowing water at microscale. This model predicted target concentrations of enteric viruses that can occur unexpectedly in wells at considerable distances (5–8 km) from the runoff injection site (sinkhole). Subsequently, the health impact of viruses in drinking water supplied from contaminated wells was estimated during the summer on the Salento coast. Specific unpublished dose-response model coefficients were proposed to determine the infection probabilities for Echo-11 and Polio 1 enteroviruses through ingestion. The median (50%) risk of infection was estimated at 6.3 · 10 −3 with an uncertainty of 23%. The predicted burden of diseases was 4.89 disability adjusted life years per year, i.e., twice the maximum tolerable disease burden. The results highlight the requirement for additional water disinfection treatments in Salento prior to the distribution of drinking water. Moreover, monthly controls of enteric virus occurrence in water from wells should be imposed by a new water framework directive in semiarid regions because of the vulnerability of karst carbonate aquifers to prolonged floodwater injections and enteric virus contamination.
We demonstrated that floods can induce severe microbiological contamination of drinking water from wells and suggest strategies to better address water safety plans for groundwater drinking supplies. Since 2002, the Italian Water Research Institute (IRSA) has detected hepatitis A virus, adenovirus, rotavirus, norovirus, and enterovirus in water samples from wells in the Salento peninsula, southern Italy. Perturbations in the ionic strength in water flow can initiate strong virus detachments from terra rossa sediments in karst fractures. This study therefore explored the potential health impacts of prolonged runoff injections in Salento groundwater caused by severe flooding during October 2018. A mathematical model for virus fate and transport in fractures was applied to determine the impact of floodwater injection on groundwater quality by incorporating mechanisms that affect virus attachment/detachment and survival in flowing water at microscale. This model predicted target concentrations of enteric viruses that can occur unexpectedly in wells at considerable distances (5-8 km) from the runoff injection site (sinkhole). Subsequently, the health impact of viruses in drinking water supplied from contaminated wells was estimated during the summer on the Salento coast. Specific unpublished dose response model coefficients were proposed to determine the infection probabilities for Echo-11 and Polio 1 enteroviruses through ingestion. The median (50%) risk of infection was estimated at 6.3 . 10(-3) with an uncertainty of 23%. The predicted burden of diseases was 4.89 disability adjusted life years per year, i.e., twice the maximum tolerable disease burden. The results highlight the requirement for additional water disinfection treatments in Salento prior to the distribution of drinking water. Moreover, monthly controls of enteric virus occurrence in water from wells should be imposed by a new water framework directive in semiarid regions because of the vulnerability of karst carbonate aquifers to prolonged floodwater injections and enteric virus contamination. (C) 2019 Elsevier BM. All rights reserved.
File in questo prodotto:
File Dimensione Formato  
Masciopinto et al. 2019.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 1.57 MB
Formato Adobe PDF
1.57 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/226545
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 22
social impact