Androgens and androgen receptor (AR, NR3C4) clearly play a crucial role in prostate cancer progression. Besides, the link between metabolic disorders and the risk of developing a prostate cancer has been emerging these last years. Interestingly, "lipid" nuclear receptors such as LXRα/NR1H3 and LXRβ/NR1H2 (as well as FXRα/NR1H4 and SHP/NR0B2) have been described to decrease the lipid metabolism, while AR increases it. Moreover, these former orphan nuclear receptors can regulate androgen levels and modulate AR activity. Thus, it is not surprising to find such receptors involved in the physiology of prostate. This review is focused on the roles of liver X receptors (LXRs), farnesoid X receptor (FXR), and small heterodimeric partner (SHP) in prostate physiology and their capabilities to interfere with the androgen-regulated pathways by modulating the levels of active androgen within the prostate. By the use of prostate cancer cell lines, mice deficient for these nuclear receptors and human tissue libraries, several authors have pointed out the putative possibility to pharmacologically target these receptors. These data open a new field of research for the development of new drugs that could overcome the castration resistance in prostate cancer, a usual phenomenon in patients.

LXRs, SHP, and FXR in Prostate Cancer: Enemies or Ménage à Quatre With AR?

Cariello, Marica;Moschetta, Antonio;
2018-01-01

Abstract

Androgens and androgen receptor (AR, NR3C4) clearly play a crucial role in prostate cancer progression. Besides, the link between metabolic disorders and the risk of developing a prostate cancer has been emerging these last years. Interestingly, "lipid" nuclear receptors such as LXRα/NR1H3 and LXRβ/NR1H2 (as well as FXRα/NR1H4 and SHP/NR0B2) have been described to decrease the lipid metabolism, while AR increases it. Moreover, these former orphan nuclear receptors can regulate androgen levels and modulate AR activity. Thus, it is not surprising to find such receptors involved in the physiology of prostate. This review is focused on the roles of liver X receptors (LXRs), farnesoid X receptor (FXR), and small heterodimeric partner (SHP) in prostate physiology and their capabilities to interfere with the androgen-regulated pathways by modulating the levels of active androgen within the prostate. By the use of prostate cancer cell lines, mice deficient for these nuclear receptors and human tissue libraries, several authors have pointed out the putative possibility to pharmacologically target these receptors. These data open a new field of research for the development of new drugs that could overcome the castration resistance in prostate cancer, a usual phenomenon in patients.
File in questo prodotto:
File Dimensione Formato  
Cariello et al 2018.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 344.89 kB
Formato Adobe PDF
344.89 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/225943
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 9
  • ???jsp.display-item.citation.isi??? ND
social impact