The paper is concerned with the optimal harvesting of a marine resource, described by an elliptic equation with Neumann boundary conditions and a nonlinear source term. Since the cost function has linear growth, an optimal solution is found within the class of measure-valued control strategies. The paper also provides results on the existence and uniqueness of strictly positive solutions to the elliptic equation, and an averaging inequality valid for subharmonic functions with Neumann boundary data

A Multi-dimensional Optimal Harvesting Problem with Measure Valued Solutions

COCLITE, Giuseppe Maria;
2013

Abstract

The paper is concerned with the optimal harvesting of a marine resource, described by an elliptic equation with Neumann boundary conditions and a nonlinear source term. Since the cost function has linear growth, an optimal solution is found within the class of measure-valued control strategies. The paper also provides results on the existence and uniqueness of strictly positive solutions to the elliptic equation, and an averaging inequality valid for subharmonic functions with Neumann boundary data
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11586/22574
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 16
social impact