In this paper we will consider the peridynamic equation of motion which is described by a second order in time partial integro-differential equation. This equation has recently received great attention in several fields of Engineering because seems to provide an effective approach to modeling mechanical systems avoiding spatial discontinuous derivatives and body singularities. In particular, we will consider the linear model of peridynamics in a one-dimensional spatial domain. Here we will review some numerical techniques to solve this equation and propose some new computational methods of higher order in space; moreover we will see how to apply the methods studied for the linear model to the nonlinear one. Also a spectral method for the spatial discretization of the linear problem will be discussed. Several numerical tests will be given in order to validate our results.
Numerical methods for the nonlocal wave equation of the peridynamics
Lopez, L.Conceptualization
;
2020-01-01
Abstract
In this paper we will consider the peridynamic equation of motion which is described by a second order in time partial integro-differential equation. This equation has recently received great attention in several fields of Engineering because seems to provide an effective approach to modeling mechanical systems avoiding spatial discontinuous derivatives and body singularities. In particular, we will consider the linear model of peridynamics in a one-dimensional spatial domain. Here we will review some numerical techniques to solve this equation and propose some new computational methods of higher order in space; moreover we will see how to apply the methods studied for the linear model to the nonlinear one. Also a spectral method for the spatial discretization of the linear problem will be discussed. Several numerical tests will be given in order to validate our results.File | Dimensione | Formato | |
---|---|---|---|
Wave_Peridynamic_13-11-18.pdf
accesso aperto
Descrizione: Pre-print
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
4.08 MB
Formato
Adobe PDF
|
4.08 MB | Adobe PDF | Visualizza/Apri |
APNUM_2020.pdf
non disponibili
Tipologia:
Documento in Versione Editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
2.07 MB
Formato
Adobe PDF
|
2.07 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.