We consider a smooth planar system having slow-fast motion, where the slow motion takes place near a curve γ. We explore the idea of replacing the original smooth system with a system with discontinuous right-hand side (DRHS system for short), whereby the DRHS system coincides with the smooth one away from a neighborhood of γ. After this reformulation, in the region of phase-space where γ is attracting for the DRHS system, we will obtain sliding motion on γ and numerical methods apt at integrating for sliding motion can be applied. Moreover, we further bypass resolving the sliding motion and monitor entries (transversal) and exits (tangential) on the curve γ, a fact that can be done independently of resolving for the motion itself. The end result is a method free from the need to adopt stiff integrators or to worry about resolving sliding motion for the DRHS system. We illustrate the performance of our method on a few problems, highlighting the feasibility of using simple explicit Runge-Kutta schemes, and that we obtain much the same orbits of the original smooth system.

Smooth to discontinuous systems: A geometric and numerical method for slow-fast dynamics

Elia, Cinzia
2018-01-01

Abstract

We consider a smooth planar system having slow-fast motion, where the slow motion takes place near a curve γ. We explore the idea of replacing the original smooth system with a system with discontinuous right-hand side (DRHS system for short), whereby the DRHS system coincides with the smooth one away from a neighborhood of γ. After this reformulation, in the region of phase-space where γ is attracting for the DRHS system, we will obtain sliding motion on γ and numerical methods apt at integrating for sliding motion can be applied. Moreover, we further bypass resolving the sliding motion and monitor entries (transversal) and exits (tangential) on the curve γ, a fact that can be done independently of resolving for the motion itself. The end result is a method free from the need to adopt stiff integrators or to worry about resolving sliding motion for the DRHS system. We illustrate the performance of our method on a few problems, highlighting the feasibility of using simple explicit Runge-Kutta schemes, and that we obtain much the same orbits of the original smooth system.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/225354
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact