The two related one space dimensional singular linear parabolic equations (1), (2) studied by H. Brezis et al. [Comm. Pure Appl. Math. 24 (1971), pp. 395–416] have different scaling properties. These scaling properties lead to new variants of the Hardy and Caffarelli-Kohn-Nirenberg inequalities. These results are proved, and they imply some non-wellposedness results when the constant in the singular potential term is large enough.
Scaling and Variants of Hardy's inequality
Rosamaria Mininni;Silvia Romanelli
2019-01-01
Abstract
The two related one space dimensional singular linear parabolic equations (1), (2) studied by H. Brezis et al. [Comm. Pure Appl. Math. 24 (1971), pp. 395–416] have different scaling properties. These scaling properties lead to new variants of the Hardy and Caffarelli-Kohn-Nirenberg inequalities. These results are proved, and they imply some non-wellposedness results when the constant in the singular potential term is large enough.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.