Wind speed forecasting is particularly important for wind farms due to cost-related issues, dispatch planning, and energy markets operations. This paper presents a multi-target learning method, in order to model historical wind speed data and yield accurate forecasts of the wind speed on the day-ahead (24 h) horizon. The proposed method is based on the analysis of historical data, which are represented at multiple scales in both space and time. Handling multi-scale data allows us to leverage the knowledge hidden in both the spatial and temporal variability of the shared information, in order to identify spatio-temporal aided patterns that contribute to yield accurate wind speed forecasts. The viability of the presented method is evaluated by considering benchmark data. Specifically, the empirical study shows that learning multi-scale historical data allows us to determine accurate wind speed forecasts.
Handling multi-scale data via multi-target learning for wind speed forecasting
Appice, Annalisa;Lanza, Antonietta;Malerba, Donato
2018-01-01
Abstract
Wind speed forecasting is particularly important for wind farms due to cost-related issues, dispatch planning, and energy markets operations. This paper presents a multi-target learning method, in order to model historical wind speed data and yield accurate forecasts of the wind speed on the day-ahead (24 h) horizon. The proposed method is based on the analysis of historical data, which are represented at multiple scales in both space and time. Handling multi-scale data allows us to leverage the knowledge hidden in both the spatial and temporal variability of the shared information, in order to identify spatio-temporal aided patterns that contribute to yield accurate wind speed forecasts. The viability of the presented method is evaluated by considering benchmark data. Specifically, the empirical study shows that learning multi-scale historical data allows us to determine accurate wind speed forecasts.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.