Pd-catalyzed Suzuki–Miyaura cross-coupling between (hetero)aryl halides (Cl, Br, I) and versatile, moisture-stable mono- and bifunctional potassium aryltrifluoroborates proceeded efficiently and chemoselectively in air and under generally mild conditions; a catalyst loading as low as 1 mol % combined with Na2CO3as a base in choline chloride/glycerol (1:2) deep eutectic solvent (DES) was used as a sustainable and environmentally responsible medium. The catalyst, base, and DES were easily and successfully recycled up to six times with an E-factor as low as 8.74. Valuable biaryls and terphenyl derivatives were furnished in yields of up to 98 %; over 50 reactions were compared and discussed. The methodology was applied for the synthesis of the nonsteroidal anti-inflammatory drugs Felbinac and Diflunisal.
Ligand-Free Bioinspired Suzuki–Miyaura Coupling Reactions using Aryltrifluoroborates as Effective Partners in Deep Eutectic Solvents
Dilauro, G.Membro del Collaboration Group
;Vitale, P.Membro del Collaboration Group
;Perna, F. M.
;Capriati, V.
2018-01-01
Abstract
Pd-catalyzed Suzuki–Miyaura cross-coupling between (hetero)aryl halides (Cl, Br, I) and versatile, moisture-stable mono- and bifunctional potassium aryltrifluoroborates proceeded efficiently and chemoselectively in air and under generally mild conditions; a catalyst loading as low as 1 mol % combined with Na2CO3as a base in choline chloride/glycerol (1:2) deep eutectic solvent (DES) was used as a sustainable and environmentally responsible medium. The catalyst, base, and DES were easily and successfully recycled up to six times with an E-factor as low as 8.74. Valuable biaryls and terphenyl derivatives were furnished in yields of up to 98 %; over 50 reactions were compared and discussed. The methodology was applied for the synthesis of the nonsteroidal anti-inflammatory drugs Felbinac and Diflunisal.File | Dimensione | Formato | |
---|---|---|---|
ChemSusChem_reprint.pdf
non disponibili
Descrizione: "Articolo principale"
Tipologia:
Documento in Versione Editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.42 MB
Formato
Adobe PDF
|
1.42 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
F-2018_CSC_accepted.pdf
Open Access dal 13/10/2019
Descrizione: Articolo post print accesso pubblico
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
4.81 MB
Formato
Adobe PDF
|
4.81 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.