We present a classification of the complete, simply connected, contact metric (κ, μ)--spaces as homogeneous contact metric manifolds, by studying the base space of their canonical fibration. According to the value of the Boeckx invariant, it turns out that the base is a complexification or a para-complexification of a sphere or of a hyperbolic space. In particular, we obtain a new homogeneous representation of the contact metric (κ, μ)--spaces with Boeckx invariant less than -1.

CANONICAL FIBRATIONS OF CONTACT METRIC (κ, μ)-SPACES

Eugenia Loiudice;Antonio Lotta
2019-01-01

Abstract

We present a classification of the complete, simply connected, contact metric (κ, μ)--spaces as homogeneous contact metric manifolds, by studying the base space of their canonical fibration. According to the value of the Boeckx invariant, it turns out that the base is a complexification or a para-complexification of a sphere or of a hyperbolic space. In particular, we obtain a new homogeneous representation of the contact metric (κ, μ)--spaces with Boeckx invariant less than -1.
File in questo prodotto:
File Dimensione Formato  
pacific_loiudice_lotta.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 378.22 kB
Formato Adobe PDF
378.22 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
loiudice_lotta_fibrations_post-print.pdf

accesso aperto

Descrizione: Articolo principale in versione Post-print
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 430.59 kB
Formato Adobe PDF
430.59 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/222795
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact