We present a classification of the complete, simply connected, contact metric (κ, μ)--spaces as homogeneous contact metric manifolds, by studying the base space of their canonical fibration. According to the value of the Boeckx invariant, it turns out that the base is a complexification or a para-complexification of a sphere or of a hyperbolic space. In particular, we obtain a new homogeneous representation of the contact metric (κ, μ)--spaces with Boeckx invariant less than -1.
CANONICAL FIBRATIONS OF CONTACT METRIC (κ, μ)-SPACES
Eugenia Loiudice;Antonio Lotta
2019-01-01
Abstract
We present a classification of the complete, simply connected, contact metric (κ, μ)--spaces as homogeneous contact metric manifolds, by studying the base space of their canonical fibration. According to the value of the Boeckx invariant, it turns out that the base is a complexification or a para-complexification of a sphere or of a hyperbolic space. In particular, we obtain a new homogeneous representation of the contact metric (κ, μ)--spaces with Boeckx invariant less than -1.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
pacific_loiudice_lotta.pdf
non disponibili
Tipologia:
Documento in Versione Editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
378.22 kB
Formato
Adobe PDF
|
378.22 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
loiudice_lotta_fibrations_post-print.pdf
accesso aperto
Descrizione: Articolo principale in versione Post-print
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
430.59 kB
Formato
Adobe PDF
|
430.59 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.