Machine learning techniques are tailored to build intelligent systems to support clinicians at the point of care. In particular, they can complement standard clinical evaluations for the assessment of early signs and manifestations of Parkinson’s disease (PD). Patients suffering from PD typically exhibit impairments of previously learned motor skills, such as handwriting. Therefore, handwriting can be considered a powerful marker to develop automatized diagnostic tools. In this paper, we investigated if and to which extent dynamic features of the handwriting process can support PD diagnosis at earlier stages. To this end, a subset of the publicly available PaHaW dataset has been used, including those patients showing only early to mild degree of disease severity. We developed a classification framework based on different classifiers and an ensemble scheme. Some encouraging results have been obtained; in particular, good specificity performances have been observed. This indicates that a handwriting-based decision support tool could be used to administer screening tests useful for ruling in disease.
Dynamic Handwriting Analysis for Supporting Earlier Parkinson’s Disease Diagnosis
Donato Impedovo;Giuseppe Pirlo;Gennaro Vessio
2018-01-01
Abstract
Machine learning techniques are tailored to build intelligent systems to support clinicians at the point of care. In particular, they can complement standard clinical evaluations for the assessment of early signs and manifestations of Parkinson’s disease (PD). Patients suffering from PD typically exhibit impairments of previously learned motor skills, such as handwriting. Therefore, handwriting can be considered a powerful marker to develop automatized diagnostic tools. In this paper, we investigated if and to which extent dynamic features of the handwriting process can support PD diagnosis at earlier stages. To this end, a subset of the publicly available PaHaW dataset has been used, including those patients showing only early to mild degree of disease severity. We developed a classification framework based on different classifiers and an ensemble scheme. Some encouraging results have been obtained; in particular, good specificity performances have been observed. This indicates that a handwriting-based decision support tool could be used to administer screening tests useful for ruling in disease.File | Dimensione | Formato | |
---|---|---|---|
information-09-00247.pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
263.96 kB
Formato
Adobe PDF
|
263.96 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.