We address the phenomenon of statistical orthogonality catastrophe in insulating disordered systems. In more detail, we analyse the response of a system of non-interacting fermions to a local perturbation induced by an impurity. By inspecting the overlap between the pre- and post-quench many-body ground states we fully characterise the emergent statistics of orthogonality events as a function of both the impurity position and the coupling strength. We consider two well-known one-dimensional models, namely the Anderson and Aubry-André insulators, highlighting the arising differences. Particularly, in the Aubry-André model the highly correlated nature of the quasi-periodic potential produces unexpected features in how the orthogonality catastrophe occurs. We provide a quantitative explanation of such features via a simple, effective model. We further discuss the incommensurate ratio approximation and suggest a viable experimental verification in terms of charge transfer statistics and interferometric experiments using quantum probes.
Statistics of orthogonality catastrophe events in localised disordered lattices
BORRELLI, LUCIA MARIA;Pascazio, S.;Scardicchio, A.;
2018-01-01
Abstract
We address the phenomenon of statistical orthogonality catastrophe in insulating disordered systems. In more detail, we analyse the response of a system of non-interacting fermions to a local perturbation induced by an impurity. By inspecting the overlap between the pre- and post-quench many-body ground states we fully characterise the emergent statistics of orthogonality events as a function of both the impurity position and the coupling strength. We consider two well-known one-dimensional models, namely the Anderson and Aubry-André insulators, highlighting the arising differences. Particularly, in the Aubry-André model the highly correlated nature of the quasi-periodic potential produces unexpected features in how the orthogonality catastrophe occurs. We provide a quantitative explanation of such features via a simple, effective model. We further discuss the incommensurate ratio approximation and suggest a viable experimental verification in terms of charge transfer statistics and interferometric experiments using quantum probes.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.