Clinical and fundamental research suggest that altered calcium and cAMP signaling might be the most proximal events in ADPKD pathogenesis. Cells from ADPKD cysts have a reduced resting cytosolic calcium [Ca2+]iand increased cAMP levels. CaSR plays an essential role in regulating calcium homeostasis. Its activation is associated with [Ca2+]iincrease and cAMP decrease, making CaSR a possible therapeutic target. Human conditionally immortalized Proximal Tubular Epithelial cells (ciPTEC) with stable knockdown of PKD1 (ciPTEC-PC1KD) and ciPTEC generated from an ADPKD1 patient (ciPTEC-PC1Pt) were used as experimental tools. CaSR functional expression was confirmed by studies showing that the calcimimetic NPS-R568 induced a significant increase in [Ca2+]iin ciPTEC-PC1KD and ciPTEC-PC1Pt. Resting [Ca2+]iwere significantly lower in ciPTEC-PC1KD with respect to ciPTECwt, confirming calcium dysregulation. As in native cyst cells, significantly higher cAMP levels and mTOR activity were found in ciPTEC-PC1KD compared to ciPTECwt. Of note, NPS-R568 treatment significantly reduced intracellular cAMP and mTOR activity in ciPTEC-PC1KD and ciPTEC-PC1Pt. To conclude, we demonstrated that selective CaSR activation in human ciPTEC carrying PKD1 mutation increases [Ca2+]i, reduces intracellular cAMP and mTOR activity, reversing the principal dysregulations considered the most proximal events in ADPKD pathogenesis, making CaSR a possible candidate as therapeutic target.

Activation of Calcium-Sensing Receptor increases intracellular calcium and decreases cAMP and mTOR in PKD1 deficient cells

Di Mise, Annarita;Tamma, Grazia;Ranieri, Marianna;Centrone, Mariangela;Valenti, Giovanna
2018-01-01

Abstract

Clinical and fundamental research suggest that altered calcium and cAMP signaling might be the most proximal events in ADPKD pathogenesis. Cells from ADPKD cysts have a reduced resting cytosolic calcium [Ca2+]iand increased cAMP levels. CaSR plays an essential role in regulating calcium homeostasis. Its activation is associated with [Ca2+]iincrease and cAMP decrease, making CaSR a possible therapeutic target. Human conditionally immortalized Proximal Tubular Epithelial cells (ciPTEC) with stable knockdown of PKD1 (ciPTEC-PC1KD) and ciPTEC generated from an ADPKD1 patient (ciPTEC-PC1Pt) were used as experimental tools. CaSR functional expression was confirmed by studies showing that the calcimimetic NPS-R568 induced a significant increase in [Ca2+]iin ciPTEC-PC1KD and ciPTEC-PC1Pt. Resting [Ca2+]iwere significantly lower in ciPTEC-PC1KD with respect to ciPTECwt, confirming calcium dysregulation. As in native cyst cells, significantly higher cAMP levels and mTOR activity were found in ciPTEC-PC1KD compared to ciPTECwt. Of note, NPS-R568 treatment significantly reduced intracellular cAMP and mTOR activity in ciPTEC-PC1KD and ciPTEC-PC1Pt. To conclude, we demonstrated that selective CaSR activation in human ciPTEC carrying PKD1 mutation increases [Ca2+]i, reduces intracellular cAMP and mTOR activity, reversing the principal dysregulations considered the most proximal events in ADPKD pathogenesis, making CaSR a possible candidate as therapeutic target.
File in questo prodotto:
File Dimensione Formato  
Di Mise et al, 2018.pdf

accesso aperto

Descrizione: articolo
Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 1.86 MB
Formato Adobe PDF
1.86 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/222060
Citazioni
  • ???jsp.display-item.citation.pmc??? 15
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 27
social impact