In this paper, we propose methods for computing the Hilbert series of multigraded right modules over the free associative algebra. In particular, we compute such series for noncommutative multigraded algebras. Using results from the theory of regular languages, we provide conditions when the methods are effective and hence the sum of the Hilbert series is a rational function. Moreover, a characterization of finite-dimensional algebras is obtained in terms of the nilpotency of a key matrix involved in the computations. Using this result, efficient variants of the methods are also developed for the computation of Hilbert series of truncated infinite-dimensional algebras whose (non-truncated) Hilbert series may not be rational functions. We consider some applications of the computation of multigraded Hilbert series to algebras that are invariant under the action of the general linear group. In fact, in this case such series are symmetric functions which can be decomposed in terms of Schur functions. Finally, we present an efficient and complete implementation of (standard) graded and multigraded Hilbert series that has been developed in the kernel of the computer algebra system Singular. A large set of tests provides a comprehensive experimentation for the proposed algorithms and their implementations.

Multigraded Hilbert series of noncommutative modules

Roberto La Scala
;
2018-01-01

Abstract

In this paper, we propose methods for computing the Hilbert series of multigraded right modules over the free associative algebra. In particular, we compute such series for noncommutative multigraded algebras. Using results from the theory of regular languages, we provide conditions when the methods are effective and hence the sum of the Hilbert series is a rational function. Moreover, a characterization of finite-dimensional algebras is obtained in terms of the nilpotency of a key matrix involved in the computations. Using this result, efficient variants of the methods are also developed for the computation of Hilbert series of truncated infinite-dimensional algebras whose (non-truncated) Hilbert series may not be rational functions. We consider some applications of the computation of multigraded Hilbert series to algebras that are invariant under the action of the general linear group. In fact, in this case such series are symmetric functions which can be decomposed in terms of Schur functions. Finally, we present an efficient and complete implementation of (standard) graded and multigraded Hilbert series that has been developed in the kernel of the computer algebra system Singular. A large set of tests provides a comprehensive experimentation for the proposed algorithms and their implementations.
File in questo prodotto:
File Dimensione Formato  
LaScalaTiwariJA.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 565.07 kB
Formato Adobe PDF
565.07 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/221080
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact