The data warehouse design methodologies require a novel approach in the Big Data context, because the methodologies have to provide solutions to face the issues related to the 5 Vs (Volume, Velocity, Variety, Veracity, and Value). So it is mandatory to support the designer through automatic techniques able to quickly produce a multidimensional schema using and integrating several data sources, which can be also unstructured and, therefore, need an ontology-based reasoning. Accordingly, the methodologies have to adopt agile techniques, in order to change the multidimensional schema as the business requirements change, without a complete design process. Furthermore, hybrid approaches must be used instead of the traditional data-driven or requirement-driven approaches, in order to avoid missing the adhesion to user requirements and to produce a valuable multidimensional schema compliant with data sources. In the paper, we perform a metric comparison among different methodologies, in order to demonstrate that methodologies classified as hybrid, ontology-based, automatic, and agile are tailored for the Big Data context.

Evaluation of data warehouse design methodologies in the context of big data

Di Tria, Francesco;Lefons, Ezio;Tangorra, Filippo
2017-01-01

Abstract

The data warehouse design methodologies require a novel approach in the Big Data context, because the methodologies have to provide solutions to face the issues related to the 5 Vs (Volume, Velocity, Variety, Veracity, and Value). So it is mandatory to support the designer through automatic techniques able to quickly produce a multidimensional schema using and integrating several data sources, which can be also unstructured and, therefore, need an ontology-based reasoning. Accordingly, the methodologies have to adopt agile techniques, in order to change the multidimensional schema as the business requirements change, without a complete design process. Furthermore, hybrid approaches must be used instead of the traditional data-driven or requirement-driven approaches, in order to avoid missing the adhesion to user requirements and to produce a valuable multidimensional schema compliant with data sources. In the paper, we perform a metric comparison among different methodologies, in order to demonstrate that methodologies classified as hybrid, ontology-based, automatic, and agile are tailored for the Big Data context.
2017
9783319642826
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/221051
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact