The gallbladder physiologically concentrates and stores bile during fasting and provides rhythmic bile secretion both during fasting and in the postprandial phase to solubilize dietary lipids and fat-soluble vitamins. Bile acids (BAs), major lipid components of bile, play a key role as signaling molecules in modulating gene expression related to cholesterol, BA, glucose and energy metabolism. Cholecystectomy is the most commonly performed surgical procedure worldwide in patients who develop symptoms and/or complications of cholelithiasis of any type. Cholecystectomy per se, however, might cause abnormal metabolic consequences, i.e., alterations in glucose, insulin (and insulin-resistance), lipid and lipoprotein levels, liver steatosis and the metabolic syndrome. Mechanisms are likely mediated by the abnormal transintestinal flow of BAs, producing metabolic signaling that acts without gallbladder rhythmic function and involves the BAs/farnesoid X receptor (FXR) and the BA/G protein-coupled BA receptor 1 (GPBAR-1) axes in the liver, intestine, brown adipose tissue and muscle. Alterations of intestinal microbiota leading to distorted homeostatic processes are also possible. According to this view, cholecystectomy, via BA-induced changes in the enterohepatic circulation, is a risk factor for the metabolic abnormalities and becomes another “fellow traveler” with, or another risk factor for the metabolic syndrome.

Cholecystectomy and risk of metabolic syndrome

Garruti, Gabriella;Portincasa, Piero
2018-01-01

Abstract

The gallbladder physiologically concentrates and stores bile during fasting and provides rhythmic bile secretion both during fasting and in the postprandial phase to solubilize dietary lipids and fat-soluble vitamins. Bile acids (BAs), major lipid components of bile, play a key role as signaling molecules in modulating gene expression related to cholesterol, BA, glucose and energy metabolism. Cholecystectomy is the most commonly performed surgical procedure worldwide in patients who develop symptoms and/or complications of cholelithiasis of any type. Cholecystectomy per se, however, might cause abnormal metabolic consequences, i.e., alterations in glucose, insulin (and insulin-resistance), lipid and lipoprotein levels, liver steatosis and the metabolic syndrome. Mechanisms are likely mediated by the abnormal transintestinal flow of BAs, producing metabolic signaling that acts without gallbladder rhythmic function and involves the BAs/farnesoid X receptor (FXR) and the BA/G protein-coupled BA receptor 1 (GPBAR-1) axes in the liver, intestine, brown adipose tissue and muscle. Alterations of intestinal microbiota leading to distorted homeostatic processes are also possible. According to this view, cholecystectomy, via BA-induced changes in the enterohepatic circulation, is a risk factor for the metabolic abnormalities and becomes another “fellow traveler” with, or another risk factor for the metabolic syndrome.
File in questo prodotto:
File Dimensione Formato  
Di Ciaula-2018-Cholecystectomy and risk of met.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.24 MB
Formato Adobe PDF
1.24 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/221026
Citazioni
  • ???jsp.display-item.citation.pmc??? 15
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 30
social impact