The interpolation polynomial in the k-step Adams-Bashforth method may be used to compute the numerical solution at off grid points. We show that such a numerical solution is equivalent to the one obtained by the Nordsieck technique for changing the step size. We also provide an application of this technique to the event location in discontinuous differential systems
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | On the continuous extension of Adams-Bashforth methods and the event location in discontinuous ODEs |
Autori: | |
Data di pubblicazione: | 2012 |
Rivista: | |
Abstract: | The interpolation polynomial in the k-step Adams-Bashforth method may be used to compute the numerical solution at off grid points. We show that such a numerical solution is equivalent to the one obtained by the Nordsieck technique for changing the step size. We also provide an application of this technique to the event location in discontinuous differential systems |
Handle: | http://hdl.handle.net/11586/21893 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.