The aim of the present investigation was to evaluate the influence of liposome formulation on the ability of vesicles to penetrate a pathological mucus model obtained from COPD affected patients in order to assess the potential of such vesicles for the treatment of chronic respiratory diseases by inhalation. Therefore, Small Unilamellar Liposomes (PLAIN-LIPOSOMEs), Pluronic® F127- surface modified liposomes (PF-LIPOSOMEs) and PEG 2000PE-surface modified liposomes (PEG-LIPOSOMEs) were prepared using the micelle-to-vesicle transition (MVT) method and beclomethasone dipropionate (BDP) as model drug. The obtained liposomes showed diameters in the range of 40-65 nm, PDI values between 0.25-0.30 and surface electric charge essentially close to zero. The encapsulation efficiency was found to be dependent on the BDP/lipid ratio used and, furthermore, BDP-loaded liposomes were stable in size both at 37°C and at 4°C. All liposomes were not cytotoxic on H441 cell line as assessed by the MTT assay. The liposome uptake was evaluated through a cytofluorimetric assay that showed a non-significant reduction in the internalization of PEG-LIPOSOMEs as compared with PLAIN-LIPOSOMEs. The penetration studies of mucus from COPD patients showed that the PEG-LIPOSOMEs were the most mucuspenetrating vesicles after 27 hours. In addition, PEG- and PF-LIPOSOMEs did not cause any effect on bronchoalveolar lavage fluid proteins after aerosol administration in the mouse. The results highlight that PEG-LIPOSOMEs show the most interesting features in terms of penetration through the pathologic sputum, uptake by airway epithelial cells and safety profile.

Preparation of drug-loaded small unilamellar liposomes and evaluation of their potential for the treatment of chronic respiratory diseases

Vincenzo De Leo;Silvia Ruscigno;Adriana Trapani
;
Delia Mandracchia;Stefano Castellani;Angela Agostiano;Giuseppe Trapani;Lucia Catucci;Massimo Conese
2018-01-01

Abstract

The aim of the present investigation was to evaluate the influence of liposome formulation on the ability of vesicles to penetrate a pathological mucus model obtained from COPD affected patients in order to assess the potential of such vesicles for the treatment of chronic respiratory diseases by inhalation. Therefore, Small Unilamellar Liposomes (PLAIN-LIPOSOMEs), Pluronic® F127- surface modified liposomes (PF-LIPOSOMEs) and PEG 2000PE-surface modified liposomes (PEG-LIPOSOMEs) were prepared using the micelle-to-vesicle transition (MVT) method and beclomethasone dipropionate (BDP) as model drug. The obtained liposomes showed diameters in the range of 40-65 nm, PDI values between 0.25-0.30 and surface electric charge essentially close to zero. The encapsulation efficiency was found to be dependent on the BDP/lipid ratio used and, furthermore, BDP-loaded liposomes were stable in size both at 37°C and at 4°C. All liposomes were not cytotoxic on H441 cell line as assessed by the MTT assay. The liposome uptake was evaluated through a cytofluorimetric assay that showed a non-significant reduction in the internalization of PEG-LIPOSOMEs as compared with PLAIN-LIPOSOMEs. The penetration studies of mucus from COPD patients showed that the PEG-LIPOSOMEs were the most mucuspenetrating vesicles after 27 hours. In addition, PEG- and PF-LIPOSOMEs did not cause any effect on bronchoalveolar lavage fluid proteins after aerosol administration in the mouse. The results highlight that PEG-LIPOSOMEs show the most interesting features in terms of penetration through the pathologic sputum, uptake by airway epithelial cells and safety profile.
File in questo prodotto:
File Dimensione Formato  
Liposomi BDP.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.8 MB
Formato Adobe PDF
1.8 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
ijpharm.2018.accepted.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 1.15 MB
Formato Adobe PDF
1.15 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/218651
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 37
social impact