The present study aimed to develop and optimize liposome formulation for the colonic delivery of biologically active compounds. A strategy to facilitate such targeting is to formulate liposomes with a polymer coating sensitive to the pH shifts in the gastrointestinal tract. To this end, liposomes encapsulating curcumin—chosen as the biologically active compound model—and coated with the pH-responsive polymer Eudragit S100 were prepared and characterized. Curcumin was encapsulated into small unilamellar vesicles (SUVs) by the micelle-to-vesicle transition method (MVT) in a simple and organic solvent-free way. Curcumin-loaded liposomes were coated with Eudragit S100 by a fast and easily scalable pH-driven method. The prepared liposomes were evaluated for size, surface morphology, entrapment efficiency, stability, in vitro drug release, and curcumin antioxidant activity. In particular, curcumin-loaded liposomes displayed size lower than 100 nm, encapsulation efficiency of 98%, high stability at both 4 C and 25 C, high in vitro antioxidant activity, and a cumulative release that was completed within 200 min. A good Eudragit S100 coating which did not alter the properties of the curcumin-loaded liposomes was obtained. The present work therefore provides a fast and solvent-free method to prepare pH-responsive polymer-coated liposomes for the colonic delivery of biologically active compounds.

Encapsulation of Curcumin-Loaded Liposomes for Colonic Drug Delivery in a pH-Responsive Polymer Cluster Using a pH-Driven and Organic Solvent-Free Process

Vincenzo De Leo;Angelo Nacci;Francesco Longobardi;Angela Agostiano;Lucia Catucci
2018-01-01

Abstract

The present study aimed to develop and optimize liposome formulation for the colonic delivery of biologically active compounds. A strategy to facilitate such targeting is to formulate liposomes with a polymer coating sensitive to the pH shifts in the gastrointestinal tract. To this end, liposomes encapsulating curcumin—chosen as the biologically active compound model—and coated with the pH-responsive polymer Eudragit S100 were prepared and characterized. Curcumin was encapsulated into small unilamellar vesicles (SUVs) by the micelle-to-vesicle transition method (MVT) in a simple and organic solvent-free way. Curcumin-loaded liposomes were coated with Eudragit S100 by a fast and easily scalable pH-driven method. The prepared liposomes were evaluated for size, surface morphology, entrapment efficiency, stability, in vitro drug release, and curcumin antioxidant activity. In particular, curcumin-loaded liposomes displayed size lower than 100 nm, encapsulation efficiency of 98%, high stability at both 4 C and 25 C, high in vitro antioxidant activity, and a cumulative release that was completed within 200 min. A good Eudragit S100 coating which did not alter the properties of the curcumin-loaded liposomes was obtained. The present work therefore provides a fast and solvent-free method to prepare pH-responsive polymer-coated liposomes for the colonic delivery of biologically active compounds.
File in questo prodotto:
File Dimensione Formato  
molecules published paper low resolution.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 5.45 MB
Formato Adobe PDF
5.45 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/215226
Citazioni
  • ???jsp.display-item.citation.pmc??? 18
  • Scopus 89
  • ???jsp.display-item.citation.isi??? 81
social impact