Cystic fibrosis (CF) is associated to impaired Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) channel also causing decreased glutathione (GSH) secretion, defective airway bacterial clearance and inflammation. Here we checked the main ROS-producing and ROS-scavenging enzymes as potential additional factors involved in CF pathogenesis. We found that CFBE41o-cells, expressing F508del CFTR, have increased NADPH oxidase (NOX) activity and expression level, mainly responsible of the increased ROS production, and decreased glutathione reductase (GR) activity, not dependent on GR protein level decrease. Furthermore, defective CFTR proved to cause both extracellular and intracellular GSH level decrease, probably by reducing the amount of extracellular GSH-derived cysteine required for cytosolic GSH synthesis. Importantly, we provide evidence that defective CFTR and NOX/GR activity imbalance both contribute to NADPH and GSH level decrease and ROS overproduction in CF cells.

Aberrant GSH reductase and NOX activities concur with defective CFTR to pro-oxidative imbalance in cystic fibrosis airways

Favia, Maria;Guerra, Lorenzo
Membro del Collaboration Group
;
2018-01-01

Abstract

Cystic fibrosis (CF) is associated to impaired Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) channel also causing decreased glutathione (GSH) secretion, defective airway bacterial clearance and inflammation. Here we checked the main ROS-producing and ROS-scavenging enzymes as potential additional factors involved in CF pathogenesis. We found that CFBE41o-cells, expressing F508del CFTR, have increased NADPH oxidase (NOX) activity and expression level, mainly responsible of the increased ROS production, and decreased glutathione reductase (GR) activity, not dependent on GR protein level decrease. Furthermore, defective CFTR proved to cause both extracellular and intracellular GSH level decrease, probably by reducing the amount of extracellular GSH-derived cysteine required for cytosolic GSH synthesis. Importantly, we provide evidence that defective CFTR and NOX/GR activity imbalance both contribute to NADPH and GSH level decrease and ROS overproduction in CF cells.
File in questo prodotto:
File Dimensione Formato  
de Bari et al-2018.pdf

non disponibili

Descrizione: Articolo
Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.33 MB
Formato Adobe PDF
2.33 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/213615
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 16
social impact