In this paper, we further develop recent results in the numerical solution of Hamiltonian partial differential equations (PDEs) (Brugnano et al., 2015), by means of energy-conserving methods in the class of Line Integral Methods, in particular, the Runge–Kutta methods named Hamiltonian Boundary Value Methods (HBVMs). We shall use HBVMs for solving the nonlinear Schrödinger equation (NLSE), of interest in many applications. We show that the use of energy-conserving methods, able to conserve a discrete counterpart of the Hamiltonian functional, confers more robustness on the numerical solution of such a problem.

Energy-conserving methods for the nonlinear Schrödinger equation

Brugnano, L.;Iavernaro, F.
2018-01-01

Abstract

In this paper, we further develop recent results in the numerical solution of Hamiltonian partial differential equations (PDEs) (Brugnano et al., 2015), by means of energy-conserving methods in the class of Line Integral Methods, in particular, the Runge–Kutta methods named Hamiltonian Boundary Value Methods (HBVMs). We shall use HBVMs for solving the nonlinear Schrödinger equation (NLSE), of interest in many applications. We show that the use of energy-conserving methods, able to conserve a discrete counterpart of the Hamiltonian functional, confers more robustness on the numerical solution of such a problem.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/213409
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 52
  • ???jsp.display-item.citation.isi??? 50
social impact