In the recent decade, CO2 has increasingly been regarded not only as a greenhouse gas but even more as a chemical feedstock for carbon-based materials. Different strategies have evolved to realize CO2 utilization and conversion into fuels and chemicals. In particular, biological approaches have drawn attention, as natural CO2 conversion serves as a model for many processes. Microorganisms and enzymes have been studied extensively for redox reactions involving CO2. In this review, we focus on monitoring nonliving biocatalyzed reactions for the reduction of CO2 by using enzymes. We depict the opportunities but also challenges associated with utilizing such biocatalysts. Besides the application of enzymes with co-factors, resembling natural processes, and co-factor recovery, we also discuss implementation into photochemical and electrochemical techniques.

Biocatalytic and Bioelectrocatalytic Approaches for the Reduction of Carbon Dioxide using Enzymes

Dibenedetto, Angela
Writing – Original Draft Preparation
;
2017-01-01

Abstract

In the recent decade, CO2 has increasingly been regarded not only as a greenhouse gas but even more as a chemical feedstock for carbon-based materials. Different strategies have evolved to realize CO2 utilization and conversion into fuels and chemicals. In particular, biological approaches have drawn attention, as natural CO2 conversion serves as a model for many processes. Microorganisms and enzymes have been studied extensively for redox reactions involving CO2. In this review, we focus on monitoring nonliving biocatalyzed reactions for the reduction of CO2 by using enzymes. We depict the opportunities but also challenges associated with utilizing such biocatalysts. Besides the application of enzymes with co-factors, resembling natural processes, and co-factor recovery, we also discuss implementation into photochemical and electrochemical techniques.
File in questo prodotto:
File Dimensione Formato  
ente.2016.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.36 MB
Formato Adobe PDF
1.36 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/212870
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 59
  • ???jsp.display-item.citation.isi??? 19
social impact