Consider a matrix valued function $A(x)\in\R^{m\times n}$, $m\ge n$, smoothly depending on parameters $x\in\Omega\subset \R^2$, where $\Omega$ is simply connected and bounded. We consider a technique to locate parameter values where some of the $q$ dominant ($q\le n$) singular values of $A$ coalesce, in the specific case when $A$ is large and $m> n\gg q$.
LOCATING COALESCING SINGULAR VALUES OF LARGE TWO-PARAMETER MATRICES
PUGLIESE, Alessandro
2011-01-01
Abstract
Consider a matrix valued function $A(x)\in\R^{m\times n}$, $m\ge n$, smoothly depending on parameters $x\in\Omega\subset \R^2$, where $\Omega$ is simply connected and bounded. We consider a technique to locate parameter values where some of the $q$ dominant ($q\le n$) singular values of $A$ coalesce, in the specific case when $A$ is large and $m> n\gg q$.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.