Organic capped Au nanoparticles (NPs) and PbS quantum dots (QDs), synthesized with high control on size and size distribution, were used as building blocks for fabricating solid crystals by solvent evaporation. The superlattice formation process for the two types of nano-objects was investigated as a function of concentration by means of electron microscopy and X-ray techniques. The effect of building block composition, size, geometry, and concentration and the role of the organic coordinating molecules was related to the degree of order in the superlattices. A convenient combination of different complementary X-ray techniques, namely in situ and ex situ GISAXS and GIWAXS, allowed elucidating the most reliable signatures of the superlattices at various stages of the self-assembly process, since their early stage of formation and up to few months of aging. Significantly different assembly behaviour was assessed for the two types of NPs, clearly explained on the basis of their chemical composition, ultimately reflecting on the assembling process and on the final structure characteristics. This journal is

GISAXS and GIWAXS study on self-assembling processes of nanoparticle based superlattices

Corricelli, M.;Altamura, D.;Curri, M. L.;Sibillano, T.;MAZZONE, ANNAMARIA;Depalo, N.;Fanizza, E.;Giannini, C.;
2014

Abstract

Organic capped Au nanoparticles (NPs) and PbS quantum dots (QDs), synthesized with high control on size and size distribution, were used as building blocks for fabricating solid crystals by solvent evaporation. The superlattice formation process for the two types of nano-objects was investigated as a function of concentration by means of electron microscopy and X-ray techniques. The effect of building block composition, size, geometry, and concentration and the role of the organic coordinating molecules was related to the degree of order in the superlattices. A convenient combination of different complementary X-ray techniques, namely in situ and ex situ GISAXS and GIWAXS, allowed elucidating the most reliable signatures of the superlattices at various stages of the self-assembly process, since their early stage of formation and up to few months of aging. Significantly different assembly behaviour was assessed for the two types of NPs, clearly explained on the basis of their chemical composition, ultimately reflecting on the assembling process and on the final structure characteristics. This journal is
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11586/210247
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 24
social impact